Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław 50-383, Poland.
J Comput Chem. 2010 Nov 15;31(14):2555-67. doi: 10.1002/jcc.21547.
The article focus on the isomerization of nitrous acid HONO to hydrogen nitryl HNO(2). Density functional (B3LYP) and MP2 methods, and a wide variety of basis sets, have been chosen to investigate the mechanism of this reaction. The results clearly show that there are two possible paths: 1) Uncatalysed isomerisation, trans-HONO --> HNO(2), involving 1,2-hydrogen shift and characterized by a large energetic barrier 49.7 divided by 58.9 kcal/mol, 2) Catalysed double hydrogen transfer process, trans-HONO + cis-HONO --> HNO(2) + cis-HONO, which displays a significantly lower energetic barrier in a range of 11.6 divided by 18.9 kcal/mol. Topological analysis of the Electron Localization Function (ELF) shows that the hydrogen transfer for both studied reactions takes place through the formation of a 'dressed' proton along the reaction path. Use of a wide variety of basis sets demonstrates a clear basis set dependence on the ELF topology of HNO(2). Less saturated basis sets yield two lone pair basins, V(1)(N), V(2)(N), whereas more saturated ones (for example aug-cc-pVTZ and aug-cc-pVQZ) do not indicate a lone pair on the nitrogen atom. Topological analysis of the Electron Localizability Indication (ELI-D) at the CASSCF (12,10) confirms these findings, showing the existence of the lone pair basins but with decreasing populations as the basis set becomes more saturated (0.35e for the cc-pVDZ basis set to 0.06e for the aug-cc-pVTZ). This confirms that the choice of basis set not only can influence the value of the electron population at the particular atom, but can also lead to different ELF topology.
这篇文章主要关注的是亚硝酸 HONO 的异构化生成亚硝酸氢 HNO(2)。选择密度泛函 (B3LYP) 和 MP2 方法以及多种基组来研究该反应的机理。结果清楚地表明存在两种可能的路径:1)无催化异构化,trans-HONO --> HNO(2),涉及 1,2-氢迁移,其特征是能垒较大,为 49.7 千卡/摩尔;2)催化双氢转移过程,trans-HONO + cis-HONO --> HNO(2) + cis-HONO,其能垒明显较低,在 11.6 千卡/摩尔至 18.9 千卡/摩尔之间。电子定域函数(ELF)的拓扑分析表明,两种研究反应的氢转移都是通过在反应路径上形成“包裹”质子来进行的。使用多种基组表明,ELF 拓扑对 HNO(2)有明显的基组依赖性。不饱和基组产生两个孤对基,V(1)(N),V(2)(N),而更饱和的基组(例如 aug-cc-pVTZ 和 aug-cc-pVQZ)则不表明氮原子上存在孤对电子。在 CASSCF(12,10)下的电子可定域化指示(ELI-D)的拓扑分析证实了这一发现,表明存在孤对基,但随着基组的饱和程度增加,孤对电子的数量减少(cc-pVDZ 基组为 0.35e,aug-cc-pVTZ 基组为 0.06e)。这证实了基组的选择不仅会影响特定原子上的电子分布值,而且还会导致不同的 ELF 拓扑。