Suppr超能文献

在 9.4T 场强下使用 8 通道阵列加速小鼠心脏磁共振成像。

Accelerated cardiac magnetic resonance imaging in the mouse using an eight-channel array at 9.4 Tesla.

机构信息

British Heart Foundation Experimental MR Unit (BMRU), Department of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.

出版信息

Magn Reson Med. 2011 Jan;65(1):60-70. doi: 10.1002/mrm.22605.

Abstract

MRI has become an important tool to noninvasively assess global and regional cardiac function, infarct size, or myocardial blood flow in surgically or genetically modified mouse models of human heart disease. Constraints on scan time due to sensitivity to general anesthesia in hemodynamically compromised mice frequently limit the number of parameters available in one imaging session. Parallel imaging techniques to reduce acquisition times require coil arrays, which are technically challenging to design at ultrahigh magnetic field strengths. This work validates the use of an eight-channel volume phased-array coil for cardiac MRI in mice at 9.4 T. Two- and three-dimensional sequences were combined with parallel imaging techniques and used to quantify global cardiac function, T(1)-relaxation times and infarct sizes. Furthermore, the rapid acquisition of functional cine-data allowed for the first time in mice measurement of left-ventricular peak filling and ejection rates under intravenous infusion of dobutamine. The results demonstrate that a threefold accelerated data acquisition is generally feasible without compromising the accuracy of the results. This strategy may eventually pave the way for routine, multiparametric phenotyping of mouse hearts in vivo within one imaging session of tolerable duration.

摘要

MRI 已成为一种重要的工具,可用于非侵入性地评估全球和区域性心脏功能、梗塞面积或心肌血流,适用于人类心脏病的手术或基因修饰的小鼠模型。由于血流动力学受损的小鼠对全身麻醉敏感,因此扫描时间受到限制,这通常限制了在一次成像过程中可用的参数数量。为了缩短采集时间而采用的并行成像技术需要使用线圈阵列,但在超高磁场强度下设计线圈阵列具有技术挑战性。本研究验证了在 9.4T 下使用八通道容积相控阵线圈进行小鼠心脏 MRI 的方法。二维和三维序列与并行成像技术相结合,用于定量评估整体心脏功能、T1 弛豫时间和梗塞面积。此外,快速采集功能电影数据首次允许在静脉输注多巴酚丁胺的情况下测量小鼠左心室峰值充盈和射血率。结果表明,一般来说,三倍加速的数据采集是可行的,而不会影响结果的准确性。该策略最终可能为在可耐受时长的一次成像过程中对活体小鼠心脏进行常规、多参数表型分析铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13b0/3021721/82861bddc81c/mrm0065-0060-f1.jpg

相似文献

2
Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T.
Eur J Radiol. 2013 May;82(5):752-9. doi: 10.1016/j.ejrad.2011.08.002. Epub 2011 Sep 14.
3
Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application.
J Magn Reson Imaging. 2012 Oct;36(4):847-57. doi: 10.1002/jmri.23724. Epub 2012 Jun 15.
5
32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon-129 lung imaging.
Magn Reson Med. 2013 Aug;70(2):576-83. doi: 10.1002/mrm.24482. Epub 2012 Nov 6.
6
Modular 32-channel transceiver coil array for cardiac MRI at 7.0T.
Magn Reson Med. 2014 Jul;72(1):276-90. doi: 10.1002/mrm.24903. Epub 2013 Jul 31.
7
In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.
J Magn Reson. 2015 Mar;252:29-40. doi: 10.1016/j.jmr.2014.12.004. Epub 2014 Dec 26.
8
A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T.
Magn Reson Med. 2016 Sep;76(3):1015-21. doi: 10.1002/mrm.25999. Epub 2015 Sep 29.
9
32-element receiver-coil array for cardiac imaging.
Magn Reson Med. 2006 May;55(5):1142-9. doi: 10.1002/mrm.20870.
10
A dedicated two-channel phased-array receiver coil for high-resolution MRI of the rat knee cartilage at 7 T.
IEEE Trans Biomed Eng. 2009 Dec;56(12):2891-7. doi: 10.1109/TBME.2008.2006015.

引用本文的文献

1
Cardiovascular magnetic resonance imaging for sequential assessment of cardiac fibrosis in mice: technical advancements and reverse translation.
Am J Physiol Heart Circ Physiol. 2024 Jan 1;326(1):H1-H24. doi: 10.1152/ajpheart.00437.2023. Epub 2023 Nov 3.
3
Cell autonomous role of iASPP deficiency in causing cardiocutaneous disorders.
Cell Death Differ. 2018 Jul;25(7):1289-1303. doi: 10.1038/s41418-017-0039-6. Epub 2018 Jan 19.
5
Development of Real-Time Magnetic Resonance Imaging of Mouse Hearts at 9.4 Tesla--Simulations and First Application.
IEEE Trans Med Imaging. 2016 Mar;35(3):912-20. doi: 10.1109/TMI.2015.2501832. Epub 2015 Nov 19.
7
Improve myocardial T1 measurement in rats with a new regression model: application to myocardial infarction and beyond.
Magn Reson Med. 2014 Sep;72(3):737-48. doi: 10.1002/mrm.24988. Epub 2013 Oct 18.
8
Application of kt-BLAST acceleration to reduce cardiac MR imaging time in healthy and infarcted mice.
MAGMA. 2014 Jun;27(3):201-10. doi: 10.1007/s10334-013-0392-5. Epub 2013 Jul 9.
9
Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.
Am J Physiol Heart Circ Physiol. 2013 Mar 1;304(5):H633-48. doi: 10.1152/ajpheart.00771.2011. Epub 2013 Jan 4.
10

本文引用的文献

1
A high-throughput eight-channel probe head for murine MRI at 9.4 T.
Magn Reson Med. 2010 Jul;64(1):80-7. doi: 10.1002/mrm.22414.
2
Multiple-mouse MRI with multiple arrays of receive coils.
Magn Reson Med. 2010 Mar;63(3):803-10. doi: 10.1002/mrm.22236.
3
General formulation for quantitative G-factor calculation in GRAPPA reconstructions.
Magn Reson Med. 2009 Sep;62(3):739-46. doi: 10.1002/mrm.22066.
4
Advanced methods for quantification of infarct size in mice using three-dimensional high-field late gadolinium enhancement MRI.
Am J Physiol Heart Circ Physiol. 2009 Apr;296(4):H1200-8. doi: 10.1152/ajpheart.01294.2008. Epub 2009 Feb 13.
5
Cardiac phenotype of mitochondrial creatine kinase knockout mice is modified on a pure C57BL/6 genetic background.
J Mol Cell Cardiol. 2009 Jan;46(1):93-9. doi: 10.1016/j.yjmcc.2008.09.710. Epub 2008 Oct 4.
7
Wireless self-gated multiple-mouse cardiac cine MRI.
Magn Reson Med. 2008 May;59(5):1203-6. doi: 10.1002/mrm.21562.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验