Suppr超能文献

低频超声透皮给药和月桂醇硫酸钠处理的皮肤中局部和非局部传输区域内的传输途径和增强机制。

Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Pharm Sci. 2011 Feb;100(2):512-29. doi: 10.1002/jps.22280. Epub 2010 Aug 25.

Abstract

Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (r(pore)) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than r(pore) of native skin samples (13.6 Å). Conversely, r(pore) within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (>300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased r(pore) values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming.

摘要

利用低频超声透皮给药(LFS)和十二烷基硫酸钠(SLS)的最新进展表明,皮肤渗透性增强并非在整个皮肤表面均匀发生。相反,存在高度扰动的皮肤区域,称为局部传输区域(LTR)。尽管有这些发现,但很少有研究致力于识别 LTR 和周围受扰较小的非 LTR 的固有特性和形成机制。通过独立分析在多个 LFS 频率下处理的 LTR、非 LTR 和总皮肤样本,我们发现非 LTR 内的孔径(r(pore))与频率无关,范围从 18.2 到 18.5Å,但明显大于天然皮肤样本的 r(pore)(13.6Å)。相反,LTR 内的 r(pore)随着频率的降低而显著增加,从 161 到 276Å,对于 LFS/SLS 处理的皮肤,分别在 60、40 和 20kHz 时增加到无穷大(>300Å)。我们的发现表明,每个皮肤区域内的皮肤通透性增强存在不同的机制。我们提出,LTR 内的增强机制是皮肤表面空化诱导微射流崩溃的频率相关过程,而非 LTR 内 r(pore)值的增加可能归因于 SLS 扰动,由于微流的频率无关过程,SLS 增强渗透到皮肤中。

相似文献

6
Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport.
J Pharm Sci. 2000 Jul;89(7):892-900. doi: 10.1002/1520-6017(200007)89:7<892::AID-JPS6>3.0.CO;2-V.
8
9
The nature of ultrasound-SLS synergism during enhanced transdermal transport.
J Control Release. 2005 Oct 20;107(3):484-94. doi: 10.1016/j.jconrel.2005.06.011.
10
Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen.
Int J Pharm. 2012 Feb 28;423(2):289-96. doi: 10.1016/j.ijpharm.2011.11.041. Epub 2011 Dec 6.

引用本文的文献

1
Progression in low-intensity ultrasound-induced tumor radiosensitization.
Cancer Med. 2024 Jul;13(13):e7332. doi: 10.1002/cam4.7332.
2
Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery.
Adv Pharmacol Pharm Sci. 2024 Jun 5;2024:1247450. doi: 10.1155/2024/1247450. eCollection 2024.
3
Bifunctional Therapeutic Application of Low-Frequency Ultrasound Associated with Zinc Phthalocyanine-Loaded Micelles.
Int J Nanomedicine. 2020 Oct 20;15:8075-8095. doi: 10.2147/IJN.S264528. eCollection 2020.
4
Surging footprints of mathematical modeling for prediction of transdermal permeability.
Asian J Pharm Sci. 2017 Jul;12(4):299-325. doi: 10.1016/j.ajps.2017.01.005. Epub 2017 Feb 22.
5
Effect of Ultrasound-Enhanced Transdermal Drug Delivery Efficiency of Nanoparticles and Brucine.
Biomed Res Int. 2017;2017:3273816. doi: 10.1155/2017/3273816. Epub 2017 Dec 4.
7
Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.
Drug Des Devel Ther. 2015 Jul 23;9:3867-76. doi: 10.2147/DDDT.S75702. eCollection 2015.
8
Treatment of chest wall tuberculosis with transdermal ultrasound-mediated drug delivery.
Exp Ther Med. 2015 Apr;9(4):1433-1437. doi: 10.3892/etm.2015.2219. Epub 2015 Jan 27.
9
Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs.
J Control Release. 2015 Mar 28;202:93-100. doi: 10.1016/j.jconrel.2015.02.002. Epub 2015 Feb 4.
10
Skin permeabilization for transdermal drug delivery: recent advances and future prospects.
Expert Opin Drug Deliv. 2014 Mar;11(3):393-407. doi: 10.1517/17425247.2014.875528. Epub 2014 Jan 7.

本文引用的文献

2
The use of sonophoresis in the administration of drugs throughout the skin.
J Pharm Pharm Sci. 2009;12(1):88-115. doi: 10.18433/j3c30d.
4
Heterogeneity in skin treated with low-frequency ultrasound.
J Pharm Sci. 2008 Oct;97(10):4119-28. doi: 10.1002/jps.21308.
8
10
Numerical analysis of a gas bubble near bio-materials in an ultrasound field.
Ultrasound Med Biol. 2006 Jun;32(6):925-42. doi: 10.1016/j.ultrasmedbio.2006.03.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验