Suppr超能文献

含铝佐剂疫苗:优化疫苗效力和热稳定性。

Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability.

机构信息

Department of Pharmaceutical Science, University of Colorado at Denver, Aurora, Colorado 80045, USA.

出版信息

J Pharm Sci. 2011 Feb;100(2):388-401. doi: 10.1002/jps.22284. Epub 2010 Aug 25.

Abstract

Aluminum-containing adjuvants have been used to enhance the immune response against killed, inactivated, and subunit antigens for more than seven decades. Nevertheless, we are only beginning to gain important insight as to what may be some very fundamental parameters for optimizing their use. For example, there is evidence that the conventional approach of maximizing antigen binding (amount and/or strength) may not result in an optimal immune response. Adsorption of antigen onto the adjuvant has recently been suggested to decrease the thermal stability of some antigens; however, whether adsorption-induced alterations to the structure and/or stability of the antigen have consequences for the elicited immune response is unclear. Finally, the thermal stability of vaccines with aluminum-containing adjuvants is not robust. Optimizing the stability of these vaccines requires an understanding of the freeze sensitivity of the adjuvant, freeze and heat sensitivity of the antigen in the presence of the adjuvant, and perhaps most important, how (or whether) various approaches to formulation can be used to address these instabilities. This review attempts to summarize recent findings regarding issues that may dictate the success of vaccines with aluminum-containing adjuvants.

摘要

含铝佐剂已被用于增强对灭活、失活和亚单位抗原的免疫应答超过 70 年。然而,我们才刚刚开始深入了解一些可能是优化其使用的非常基本的参数。例如,有证据表明,最大化抗原结合(数量和/或强度)的传统方法可能不会导致最佳的免疫反应。最近有人提出,抗原吸附到佐剂上会降低一些抗原的热稳定性;然而,吸附诱导的抗原结构和/或稳定性的改变是否会对所引起的免疫反应产生影响尚不清楚。最后,含铝佐剂疫苗的热稳定性并不强。优化这些疫苗的稳定性需要了解佐剂的冷冻敏感性、佐剂存在下抗原的冷冻和热敏感性,也许最重要的是,各种制剂方法如何(或是否)可以用来解决这些不稳定性。本文综述了最近关于决定含铝佐剂疫苗成功的因素的研究结果。

相似文献

1
Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability.
J Pharm Sci. 2011 Feb;100(2):388-401. doi: 10.1002/jps.22284. Epub 2010 Aug 25.
3
Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants.
Vaccine. 2007 Jan 15;25(5):825-33. doi: 10.1016/j.vaccine.2006.09.039. Epub 2006 Sep 25.
5
Quantitative Analysis of Vaccine Antigen Adsorption to Aluminum Adjuvant Using an Automated High-Throughput Method.
PDA J Pharm Sci Technol. 2018 Mar-Apr;72(2):149-162. doi: 10.5731/pdajpst.2017.008250. Epub 2018 Jan 17.
6
Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response.
Vaccine. 2007 Sep 4;25(36):6618-24. doi: 10.1016/j.vaccine.2007.06.049. Epub 2007 Jul 16.
7
Autoclave-Induced Changes in the Physicochemical Properties and Antigen Adsorption of Aluminum Adjuvants.
J Pharm Sci. 2024 Feb;113(2):455-462. doi: 10.1016/j.xphs.2023.10.009. Epub 2023 Oct 8.
9
Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.
Methods Mol Biol. 2017;1494:181-199. doi: 10.1007/978-1-4939-6445-1_13.

引用本文的文献

1
Innate immunity, therapeutic targets and monoclonal antibodies in SARS-CoV-2 infection.
PeerJ. 2025 Jun 20;13:e19462. doi: 10.7717/peerj.19462. eCollection 2025.
2
Trends in uptake and impact of thermostable vaccines in Africa.
Ther Adv Vaccines Immunother. 2025 Jun 18;13:25151355251341662. doi: 10.1177/25151355251341662. eCollection 2025.
3
Elucidating the porous structure of aluminum adjuvants via in-situ small-angle scattering technique.
Vaccine. 2025 Mar 19;50:126813. doi: 10.1016/j.vaccine.2025.126813. Epub 2025 Feb 5.
4
Vaccine adjuvants: current status, research and development, licensing, and future opportunities.
J Mater Chem B. 2024 May 1;12(17):4118-4137. doi: 10.1039/d3tb02861e.
5
Analytical Insights into Protein-Alum Interactions and Their Impact on Conformational Epitope.
Pharmaceutics. 2024 Mar 19;16(3):420. doi: 10.3390/pharmaceutics16030420.
8
Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines.
Vaccines (Basel). 2023 Jun 29;11(7):1172. doi: 10.3390/vaccines11071172.
9
Aluminum Adjuvants-'Back to the Future'.
Pharmaceutics. 2023 Jul 4;15(7):1884. doi: 10.3390/pharmaceutics15071884.
10
Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms.
Pharmaceutics. 2023 Jun 17;15(6):1756. doi: 10.3390/pharmaceutics15061756.

本文引用的文献

2
Cutting edge: Necrosis activates the NLRP3 inflammasome.
J Immunol. 2009 Aug 1;183(3):1528-32. doi: 10.4049/jimmunol.0901080. Epub 2009 Jul 13.
3
A heat-stable hepatitis B vaccine formulation.
Hum Vaccin. 2009 Aug;5(8):529-35. doi: 10.4161/hv.5.8.8600. Epub 2009 Aug 1.
4
Characterization of a thermostable hepatitis B vaccine formulation.
Vaccine. 2009 Jul 23;27(34):4609-14. doi: 10.1016/j.vaccine.2009.05.069. Epub 2009 Jun 11.
5
Immunology of TLR-independent vaccine adjuvants.
Curr Opin Immunol. 2009 Jun;21(3):339-45. doi: 10.1016/j.coi.2009.05.003. Epub 2009 Jun 1.
6
Relationship between tightness of binding and immunogenicity in an aluminum-containing adjuvant-adsorbed hepatitis B vaccine.
Vaccine. 2009 May 21;27(24):3175-80. doi: 10.1016/j.vaccine.2009.03.054. Epub 2009 Apr 7.
7
Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants.
Trends Pharmacol Sci. 2009 Jun;30(6):287-95. doi: 10.1016/j.tips.2009.03.005. Epub 2009 May 11.
8
Effects of immobilization onto aluminum hydroxide particles on the thermally induced conformational behavior of three model proteins.
Int J Biol Macromol. 2009 Jul 1;45(1):80-5. doi: 10.1016/j.ijbiomac.2009.04.008. Epub 2009 May 3.
9
Towards an understanding of the adjuvant action of aluminium.
Nat Rev Immunol. 2009 Apr;9(4):287-93. doi: 10.1038/nri2510.
10
Mechanism of action of clinically approved adjuvants.
Curr Opin Immunol. 2009 Feb;21(1):23-9. doi: 10.1016/j.coi.2009.01.004. Epub 2009 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验