Chemistry Department, University of California Irvine, Irvine, California, USA.
J Phys Chem B. 2010 Sep 23;114(37):12150-6. doi: 10.1021/jp1046968.
Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two-dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ(9-40)) fibril associated with Alzheimer's disease and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ(9-40), and intermolecular interactions at the "external interface" have clear signatures in the fine details of these signals.
揭示淀粉样纤维的结构和聚集机制对于治疗与蛋白质错误折叠相关的 20 多种疾病至关重要。相干二维(2D)红外光谱是一种新颖的工具,为生物分子系统的结构和动力学提供了丰富的新见解。最近开发的超快激光源将多维光谱扩展到紫外线(UV)区域,这为探测纤维提供了新的机会。在一项模拟研究中,我们表明与阿尔茨海默病相关的 32 个残基β-淀粉样蛋白(Aβ(9-40))纤维的骨架的 2DUV 光谱和两种中间预纤维结构携带纤维大小和几何形状的特征特征,可以用于监测其形成动力学。研究了这些信号对纤维大小和几何形状的依赖性。我们证明,β-淀粉样纤维光谱的主要特征是由单个 Aβ(9-40)内的分子内相互作用决定的,而“外部界面”处的分子间相互作用在这些信号的细微细节中具有明显的特征。