Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Brussels, Belgium.
Nanotoxicology. 2010 Sep;4(3):307-18. doi: 10.3109/17435390.2010.482749.
Identifying the physico-chemical characteristics of nanoparticles (NPs) that drive their toxic activity is the key to conducting hazard assessment and guiding the design of safer nanomaterials. Here we used a set of 17 stable suspensions of monodisperse amorphous silica nanoparticles (SNPs) with selected variations in size (diameter, 2-335 nm), surface area (BET, 16-422 m(2)/g) and microporosity (micropore volume, 0-71 microl/g) to assess with multiple regression analysis the physico-chemical determinants of the cytotoxic activity in four different cell types (J774 macrophages, EAHY926 endothelial cells, 3T3 fibroblasts and human erythrocytes). We found that the response to these SNPs is governed by different physico-chemical parameters which vary with cell type: In J774 macrophages, the cytotoxic activity (WST1 assay) increased with external surface area (alphas method) and decreased with micropore volume (r(2) of the model, 0.797); in EAHY926 and 3T3 cells, the cytotoxic activity of the SNPs (MTT and WST1 assay, respectively) increased with surface roughness and small diameter (r(2), 0.740 and 0.872, respectively); in erythrocytes, the hemolytic activity increased with the diameter of the SNP (r(2), 0.860). We conclude that it is possible to predict with good accuracy the in vitro cytotoxic potential of SNPs on the basis of their physico-chemical characteristics. These determinants are, however, complex and vary with cell type, reflecting the pleiotropic interactions of nanoparticles with biological systems.
确定驱动纳米颗粒(NPs)毒性活性的物理化学特性是进行危害评估和指导更安全的纳米材料设计的关键。在这里,我们使用了一组具有选定尺寸(直径,2-335nm)、表面积(BET,16-422m²/g)和微孔率(微孔体积,0-71µl/g)变化的 17 种单分散无定形二氧化硅纳米颗粒(SNP)的稳定悬浮液,通过多元回归分析评估了这些物理化学特性对四种不同细胞类型(J774 巨噬细胞、EAHY926 内皮细胞、3T3 成纤维细胞和人红细胞)的细胞毒性活性的决定因素。我们发现,这些 SNP 的反应受不同的物理化学参数控制,这些参数因细胞类型而异:在 J774 巨噬细胞中,细胞毒性活性(WST1 测定)随外部表面积(alpha 方法)增加而增加,随微孔体积减少而减少(模型的 r²,0.797);在 EAHY926 和 3T3 细胞中,SNP 的细胞毒性活性(MTT 和 WST1 测定)随表面粗糙度和小直径增加而增加(r²,分别为 0.740 和 0.872);在红细胞中,溶血活性随 SNP 直径增加而增加(r²,0.860)。我们的结论是,根据 SNP 的物理化学特性,可以很好地预测其体外细胞毒性潜力。然而,这些决定因素是复杂的,并且因细胞类型而异,反映了纳米颗粒与生物系统的多效性相互作用。
Int J Mol Sci. 2022-12-22
ACS Appl Mater Interfaces. 2022-4-27
Front Toxicol. 2021-11-4
Int J Environ Res Public Health. 2021-6-11