Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
Inorg Chem. 2010 Sep 6;49(17):7676-84. doi: 10.1021/ic100024h.
The density functional theory (DFT) method has been used to study the electronic communication in strongly interacting oxo-bridged di-{Mo(II,I)(NO(+))}(3+,2+) complexes stabilized by tris(3-methylpyrazol-1-yl)borate, Tp(Me) (dihydroxy 1' and its modified analogs), having fully localized valences on the two Mo centers (Class I), despite a short (ca. 3.8 A) Mo...Mo distance. Structural and electrochemical (separation between the redox potentials Delta(red/ox)E(1/2)) properties and IR spectra (in particular the nu(NO) frequencies) obtained from the B3LYP calculations for 1' are successfully related to experimental values. Strongly twisted geometry with the (O)N-Mo1...Mo2-N(O) angle close to 90 degrees (confirmed by DFT modeling performed for 1'(-1,0,+1) and X-ray diffraction study of {Mo(NO)(Tp(Me2))(OH)}(2)(mu-O) (1) presented herein) is a common, though so far not fully understood, structural feature of this class of mu-oxo species, in contrast to the closely related {Mo(V)(=O)}(3+) analogs. This study shows that the orthogonality of the local equatorial planes for the two Mo centers may be rationalized by the electronic structure, namely from the balance between the destabilizing repulsion of the Mo-based (d, pi(x)*)(b) electron pairs versus a favorable but relatively weak electron delocalization. Strongly repelling electron pairs avoid each other, which enforces the twisted geometries and blocks the electron delocalization. Steric hindrance (a nonbonding repulsion of the adjacent Tp(x) ligands and the weak hydrogen-bonding interactions, i.e., OH...ON, OH...OH, and C-H...O((NO/OH))) is shown not to be decisive since neither the removal of the inner 3-Me groups of Tp(Me) in complex 1' nor the substitution of OH groups by OCH(3) ligands did substantially influence the dihedral twist angle in the minimum energy structure. Yet the relative orientation of the {Mo(NO)}(2+,3+) cores along with the position of the bridging oxygen (significantly bent upon reduction) controls the prospective intramolecular through-bond electron transfer in the mixed valence form. Our DFT modeling demonstrates that a maximum delocalization (via a hole-transfer mechanism) of the unpaired electron in 1'(-), measured as a spin population on the nonreduced Mo2 center, is achieved for the structure with a torsional deflection of 23 degrees, at a cost of 16.5 kcal/mol. These results show that the electron exchange along the Mo-O-Mo array in the originally fully valence-trapped {17e:16e}(-) complexes may be controlled and can be thermally activated (e.g., using a high-boiling solvent or by irradiation at ca. 50-200 cm(-1)).
密度泛函理论(DFT)方法已被用于研究强相互作用的氧桥联二-(Mo(II,I)(NO(+)))(3+,2+)配合物中的电子通信,这些配合物由三(3-甲基吡唑-1-基)硼酸酯[Tp(Me)](-)(二羟基 1'及其修饰类似物)稳定,尽管 Mo...Mo 距离约为 3.8 A,但两个 Mo 中心上的价电子完全局域(I 类)。通过 B3LYP 计算获得的 1'的结构和电化学(氧化还原电位 Delta(red/ox)E(1/2)之间的分离)性质和 IR 光谱(特别是 nu(NO)频率)成功地与实验值相关联。强烈扭曲的几何形状,(O)N-Mo1...Mo2-N(O)角度接近 90 度(通过对 1'(-1,0,+1)进行 DFT 建模和 X 射线衍射研究[Mo(NO)(Tp(Me2))(OH)](2)(mu-O)](-)(1)在此处呈现)是此类 mu-氧物种的常见结构特征,尽管迄今为止尚未完全理解,与密切相关的{Mo(V)= O}(3+)类似物相反。这项研究表明,两个 Mo 中心的局部赤道平面的正交性可以通过电子结构来合理化,即通过 Mo 基(d,pi(x)*)(b)电子对的不稳定排斥与有利但相对较弱的电子离域之间的平衡来合理化。强烈排斥的电子对相互避开,这强制了扭曲的几何形状并阻止了电子离域。空间位阻(相邻 Tp(x)配体的非键排斥和弱氢键相互作用,即 OH...ON、OH...OH 和 C-H...O((NO/OH)))被证明不是决定性的,因为在复合物 1'中去除内 3-Me 基团,或用 OCH(3)配体取代 OH 基团,都不会实质上影响最小能量结构中的二面角扭曲角度。然而,{Mo(NO)}(2+,3+)核的相对取向以及桥连氧的位置(还原后显著弯曲)控制了混合价形式中的预期分子内通过键电子转移。我们的 DFT 建模表明,在 1'(-)中,未配对电子的最大离域(通过空穴转移机制),以非还原的 Mo2 中心上的自旋密度来衡量,对于扭转偏转角为 23 度的结构是最大的,代价为 16.5 kcal/mol。这些结果表明,原本完全价捕获的{17e:16e}(-)配合物中 Mo-O-Mo 阵列中的电子交换可以得到控制并且可以被热激活(例如,使用高沸点溶剂或在约 50-200 cm(-1)处辐射)。