Department of Biochemistry, Eötvös University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary.
Trends Biochem Sci. 2010 Dec;35(12):684-90. doi: 10.1016/j.tibs.2010.07.012.
Actomyosin powers muscle contraction and various cellular activities, including cell division, differentiation, intracellular transport and sensory functions. Despite their crucial roles, key aspects of force generation have remained elusive. To perform efficient force generation, the powerstroke must occur while myosin is bound to actin. Paradoxically, this process must be initiated when myosin is in a very low actin-affinity state. Recent results shed light on a kinetic pathway selection mechanism whereby the actin-induced activation of the swing of myosin's lever enables efficient mechanical functioning. Structural elements and biochemical principles involved in this mechanism are conserved among various NTPase-effector (e.g. kinesin-microtubule, G protein exchange factor and kinase-scaffold protein) systems that perform chemomechanical or signal transduction.
肌球蛋白在肌肉收缩和各种细胞活动中发挥作用,包括细胞分裂、分化、细胞内运输和感觉功能。尽管它们具有至关重要的作用,但力量产生的关键方面仍然难以捉摸。为了进行有效的力量产生,力冲程必须在肌球蛋白与肌动蛋白结合时发生。矛盾的是,这个过程必须在肌球蛋白处于非常低的肌动蛋白亲和力状态时开始。最近的研究结果揭示了一种动力学途径选择机制,其中肌球蛋白杠杆的摆动被肌动蛋白诱导激活,从而使机械功能有效。参与该机制的结构元件和生化原理在各种 NTPase-效应物(例如驱动蛋白-微管、G 蛋白交换因子和激酶-支架蛋白)系统中是保守的,这些系统执行化学机械或信号转导。