Suppr超能文献

氧化还原变化在氧感测中的作用。

The role of redox changes in oxygen sensing.

机构信息

Department of Medicine, VA Medical Center and University of Minnesota, 1 Veteran's Drive, Minneapolis, MN 55417, USA.

出版信息

Respir Physiol Neurobiol. 2010 Dec 31;174(3):182-91. doi: 10.1016/j.resp.2010.08.015. Epub 2010 Aug 27.

Abstract

The specialized oxygen-sensing tissues include the carotid body and arterial smooth muscle cells in the pulmonary artery (PA) and ductus arteriosus (DA). We discuss the evidence that changes in oxygen tension are sensed through changes in redox status. "Redox" changes imply the giving or accepting of electrons. This might occur through the direct tunneling of electrons from mitochondria or redox couples to an effector protein (e.g. ion channel). Alternatively, the electron might be transferred through reactive oxygen species from mitochondria or an NADPH oxidase isoform. The PA's response to hypoxia and DA's response to normoxia result from reduction or oxidation, respectively. These opposing redox stimuli lead to K+ channel inhibition, membrane depolarization and an increase in cytosolic calcium and/or calcium sensitization that causes contraction. In the neuroendocrine cells (the type 1 cell of the carotid body, neuroepithelial body and adrenomedullary cells), the response is secretion. We examine the roles played by superoxide anion, hydrogen peroxide and the anti-oxidant enzymes in the signaling of oxygen tensions.

摘要

专门的氧气感应组织包括颈动脉体和肺动脉(PA)和动脉导管(DA)中的动脉平滑肌细胞。我们讨论了氧张力变化是通过氧化还原状态的变化来感知的证据。“氧化还原”变化意味着电子的给予或接受。这可能通过电子从线粒体或氧化还原偶联物直接隧穿到效应蛋白(例如离子通道)来发生。或者,电子可能通过来自线粒体或 NADPH 氧化酶同工型的活性氧转移。PA 对缺氧的反应和 DA 对正常氧的反应分别来自还原或氧化。这些相反的氧化还原刺激导致 K+通道抑制、膜去极化以及细胞溶质钙增加和/或钙敏化,从而导致收缩。在神经内分泌细胞(颈动脉体的 1 型细胞、神经上皮体和肾上腺髓质细胞)中,反应是分泌。我们研究了超氧阴离子、过氧化氢和抗氧化酶在氧张力信号转导中的作用。

相似文献

1
The role of redox changes in oxygen sensing.
Respir Physiol Neurobiol. 2010 Dec 31;174(3):182-91. doi: 10.1016/j.resp.2010.08.015. Epub 2010 Aug 27.
2
Mechanisms of oxygen sensing: a key to therapy of pulmonary hypertension and patent ductus arteriosus.
Br J Pharmacol. 2008 Oct;155(3):300-7. doi: 10.1038/bjp.2008.291. Epub 2008 Jul 21.
4
A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
Pflugers Arch. 2016 Jan;468(1):43-58. doi: 10.1007/s00424-015-1736-y. Epub 2015 Sep 23.
5
Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia.
Respir Physiol Neurobiol. 2010 Dec 31;174(3):221-9. doi: 10.1016/j.resp.2010.08.014. Epub 2010 Aug 27.
9
Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System.
Physiol Res. 2024 Nov 29;73(S2):S493-S510. doi: 10.33549/physiolres.935431.
10
Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
Circ Res. 2006 Oct 27;99(9):970-8. doi: 10.1161/01.RES.0000247068.75808.3f. Epub 2006 Sep 28.

引用本文的文献

2
ROS and cGMP signaling modulate persistent escape from hypoxia in Caenorhabditis elegans.
PLoS Biol. 2022 Jun 21;20(6):e3001684. doi: 10.1371/journal.pbio.3001684. eCollection 2022 Jun.
3
Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension.
Antioxidants (Basel). 2022 Feb 28;11(3):473. doi: 10.3390/antiox11030473.
4
Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology.
Redox Biol. 2021 Nov;47:102164. doi: 10.1016/j.redox.2021.102164. Epub 2021 Oct 12.
5
Redox Regulation, Oxidative Stress, and Inflammation in Group 3 Pulmonary Hypertension.
Adv Exp Med Biol. 2021;1303:209-241. doi: 10.1007/978-3-030-63046-1_13.
6
Patent ductus arteriosus and oxidative stress in preterm infants: a narrative review.
Transl Pediatr. 2020 Dec;9(6):835-839. doi: 10.21037/tp-20-121.
7
Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer.
Free Radic Biol Med. 2021 Jul;170:150-178. doi: 10.1016/j.freeradbiomed.2020.12.452. Epub 2021 Jan 12.
8
Alteration of miRNA Biogenesis Regulating Proteins in the Human Microglial Cell Line HMC-3 After Ischemic Stress.
Mol Neurobiol. 2021 Apr;58(4):1535-1549. doi: 10.1007/s12035-020-02210-y. Epub 2020 Nov 19.
9
Hypoxia Signaling in Vascular Homeostasis.
Physiology (Bethesda). 2018 Sep 1;33(5):328-337. doi: 10.1152/physiol.00018.2018.
10
Emerging roles of SIRT1 in fatty liver diseases.
Int J Biol Sci. 2017 Jul 6;13(7):852-867. doi: 10.7150/ijbs.19370. eCollection 2017.

本文引用的文献

1
Superoxide dismutase: master and commander?
Eur Respir J. 2010 Aug;36(2):234-6. doi: 10.1183/09031936.00062510.
3
Methods for detection and measurement of hydrogen peroxide inside and outside of cells.
Mol Cells. 2010 Jun;29(6):539-49. doi: 10.1007/s10059-010-0082-3. Epub 2010 Jun 4.
4
Tetrahydrobiopterin and the regulation of hypoxic pulmonary vasoconstriction.
Eur Respir J. 2010 Aug;36(2):323-30. doi: 10.1183/09031936.00188809. Epub 2010 Mar 11.
5
Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):897-906. doi: 10.1016/j.bbabio.2010.01.032. Epub 2010 Feb 1.
6
Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells.
Circ Res. 2010 Feb 19;106(3):526-35. doi: 10.1161/CIRCRESAHA.109.206334. Epub 2009 Dec 17.
7
Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif.
PLoS One. 2009 Nov 26;4(11):e8045. doi: 10.1371/journal.pone.0008045.
9
Elevated mitochondrial superoxide contributes to enhanced chemoreflex in heart failure rabbits.
Am J Physiol Regul Integr Comp Physiol. 2010 Feb;298(2):R303-11. doi: 10.1152/ajpregu.00629.2009. Epub 2009 Nov 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验