Department of Environmental Engineering, Technical University of Denmark, Miljøvej, bldg. 113, 2800 Lyngby, Denmark.
Water Res. 2010 Dec;44(20):6073-84. doi: 10.1016/j.watres.2010.07.074. Epub 2010 Aug 4.
Nitrogen removal via nitrite has gained increasing attention in recent years due to its potential cost savings. Membrane-aerated biofilm reactors (MABRs) are one potential technology suitable to achieve nitritation. In this study we compared lab scale MABRs with conventional biofilm reactors to evaluate the influence of environmental conditions and operational parameters on nitritation performance. The oxygen mass transfer rate is postulated as a crucial parameter to control nitritation in the MABR: Clean water measurements showed significant underestimation of the total oxygen mass transfer, however, accurate determination of the oxygen mass transfer coefficient (k(m)) of the system could be achieved by adjusting the liquid-phase mass transfer resistance in the constructed model. Batch experiments at different initial ammonium concentrations revealed that the conventional biofilm geometry was superior for nitritation compared to MABRs. These differences were reflected well in estimates of the oxygen affinity constants of the key microbial players, AOB and NOB (K(O,AOB) < K(O,NOB) (in both systems) and K(O,NOB) values smaller in the MABR vs. the conventional biofilm system). It also appeared that - in addition to oxygen limitation - the absolute and relative substrate concentrations in the biofilm (esp. of oxygen) are very important for successful nitritation. Initial biomass composition, furthermore, impacted reactor performance in the MABR systems indicating the need for appropriate inoculum choice.
近年来,由于具有潜在的成本节约优势,亚硝酸盐途径的脱氮受到了越来越多的关注。膜曝气生物膜反应器(MABR)是一种适合实现亚硝化的潜在技术。在这项研究中,我们比较了实验室规模的 MABR 和传统生物膜反应器,以评估环境条件和操作参数对亚硝化性能的影响。氧传质速率被认为是控制 MABR 中亚硝化的关键参数:清水测量显示总氧传质存在显著低估,但通过调整模型中液相传质阻力,可以准确确定系统的氧传质系数(k(m))。在不同初始氨浓度下的批量实验表明,与 MABR 相比,传统生物膜几何形状更适合亚硝化。这些差异在关键微生物 AOB 和 NOB 的氧亲和力常数的估计中得到了很好的反映(在两种系统中,K(O,AOB) < K(O,NOB),并且在 MABR 中 K(O,NOB) 值小于传统生物膜系统)。似乎除了氧气限制之外,生物膜中的绝对和相对基质浓度(特别是氧气)对于成功的亚硝化也非常重要。此外,初始生物量组成还会影响 MABR 系统中的反应器性能,这表明需要选择合适的接种物。