Suppr超能文献

自转运蛋白 C 末端结构域的生化和功能特性的比较分析。

Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters.

机构信息

Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid 28049, Spain.

出版信息

J Bacteriol. 2010 Nov;192(21):5588-602. doi: 10.1128/JB.00432-10. Epub 2010 Aug 27.

Abstract

Autotransporters (ATs) are the largest group of proteins secreted by Gram-negative bacteria and include many virulence factors from human pathogens. ATs are synthesized as large precursors with a C-terminal domain that is inserted in the outer membrane (OM) and is essential for the translocation of an N-terminal passenger domain to the extracellular milieu. Several mechanisms have been proposed for AT secretion. Self-translocation models suggest transport across a hydrophilic channel formed by an internal pore of the β-barrel or by the oligomerization of C-terminal domains. Alternatively, an assisted-translocation model suggests that transport employs a conserved machinery of the bacterial OM such as the Bam complex. In this work we have investigated AT secretion by carrying out a comparative study to analyze the conserved biochemical and functional features of different C-terminal domains selected from ATs of gammaproteobacteria, betaproteobacteria, alphaproteobacteria, and epsilonproteobacteria. Our results indicate that C-terminal domains having an N-terminal α-helix and a β-barrel constitute functional transport units for the translocation of peptides and immunoglobulin domains with disulfide bonds. In vivo and in vitro analyses show that multimerization is not a conserved feature in AT C-terminal domains. Furthermore, we demonstrate that the deletion of the conserved α-helix severely impairs β-barrel folding and OM insertion and thereby blocks passenger domain secretion. These observations suggest that the AT β-barrel without its α-helix cannot form a stable hydrophilic channel in the OM for protein translocation. The implications of our data for an understanding of AT secretion are discussed.

摘要

自转运蛋白(ATs)是革兰氏阴性细菌分泌的最大蛋白组,其中包括许多人类病原体的毒力因子。ATs 作为具有 C 端结构域的大型前体合成,该结构域插入外膜(OM)中,对于 N 端载体结构域向细胞外环境的易位是必需的。已经提出了几种 AT 分泌机制。自转运模型表明,通过β桶内部孔或 C 端结构域的寡聚化形成的亲水性通道进行转运。或者,辅助转运模型表明,转运利用细菌 OM 的保守机制,例如 Bam 复合物。在这项工作中,我们通过进行比较研究来分析从γ变形菌、β变形菌、α变形菌和ε变形菌的 AT 中选择的不同 C 端结构域的保守生化和功能特征,来研究 AT 的分泌。我们的结果表明,具有 N 端α-螺旋和β桶的 C 端结构域构成了肽和具有二硫键的免疫球蛋白结构域易位的功能转运单元。体内和体外分析表明,多聚化不是 AT C 端结构域的保守特征。此外,我们证明保守的α-螺旋缺失严重损害β桶折叠和 OM 插入,从而阻止载体结构域的分泌。这些观察结果表明,AT 的β桶没有其α-螺旋就不能在外膜中形成稳定的亲水性通道以进行蛋白质转运。我们的数据对理解 AT 分泌的意义进行了讨论。

相似文献

1
Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters.
J Bacteriol. 2010 Nov;192(21):5588-602. doi: 10.1128/JB.00432-10. Epub 2010 Aug 27.
2
Autotransporter β-domains have a specific function in protein secretion beyond outer-membrane targeting.
J Mol Biol. 2011 Sep 30;412(4):553-67. doi: 10.1016/j.jmb.2011.07.035. Epub 2011 Jul 23.
3
The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease.
Microbiology (Reading). 2009 Dec;155(Pt 12):3982-3991. doi: 10.1099/mic.0.034991-0. Epub 2009 Oct 8.
4
Molecular basis for the folding of β-helical autotransporter passenger domains.
Nat Commun. 2018 Apr 11;9(1):1395. doi: 10.1038/s41467-018-03593-2.
5
Structural tolerance of bacterial autotransporters for folded passenger protein domains.
Mol Microbiol. 2004 May;52(4):1069-80. doi: 10.1111/j.1365-2958.2004.04014.x.
6
Structure of the translocator domain of a bacterial autotransporter.
EMBO J. 2004 Mar 24;23(6):1257-66. doi: 10.1038/sj.emboj.7600148. Epub 2004 Mar 11.
8
Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19120-5. doi: 10.1073/pnas.0907912106. Epub 2009 Oct 22.
9
Type V Secretion in Gram-Negative Bacteria.
EcoSal Plus. 2019 Feb;8(2). doi: 10.1128/ecosalplus.ESP-0031-2018.
10
BamA is required for autotransporter secretion.
Biochim Biophys Acta Gen Subj. 2020 Jul;1864(7):129581. doi: 10.1016/j.bbagen.2020.129581. Epub 2020 Feb 27.

引用本文的文献

1
Expressing red fluorescent protein on the surface of using C-terminal domain of autotransporters.
Mol Biol Res Commun. 2025;14(1):31-35. doi: 10.22099/mbrc.2024.49860.1956.
2
Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions.
Nucleic Acids Res. 2022 Dec 9;50(22):12938-12950. doi: 10.1093/nar/gkac1164.
3
Improving the autotransporter-based surface display of enzymes in Pseudomonas putida KT2440.
Microb Biotechnol. 2020 Jan;13(1):176-184. doi: 10.1111/1751-7915.13419. Epub 2019 May 2.
4
Comparing autotransporter β-domain configurations for their capacity to secrete heterologous proteins to the cell surface.
PLoS One. 2018 Feb 7;13(2):e0191622. doi: 10.1371/journal.pone.0191622. eCollection 2018.
5
Escherichia coli surface display for the selection of nanobodies.
Microb Biotechnol. 2017 Nov;10(6):1468-1484. doi: 10.1111/1751-7915.12819. Epub 2017 Aug 3.
6
Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins.
ACS Synth Biol. 2015 Apr 17;4(4):463-73. doi: 10.1021/sb500252a. Epub 2014 Jul 29.
9
Single-cell characterization of autotransporter-mediated Escherichia coli surface display of disulfide bond-containing proteins.
J Biol Chem. 2012 Nov 9;287(46):38580-9. doi: 10.1074/jbc.M112.388199. Epub 2012 Sep 27.

本文引用的文献

1
Crystal structure of a full-length autotransporter.
J Mol Biol. 2010 Feb 26;396(3):627-33. doi: 10.1016/j.jmb.2009.12.061. Epub 2010 Jan 11.
2
The Pfam protein families database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22. doi: 10.1093/nar/gkp985. Epub 2009 Nov 17.
3
Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19120-5. doi: 10.1073/pnas.0907912106. Epub 2009 Oct 22.
4
The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease.
Microbiology (Reading). 2009 Dec;155(Pt 12):3982-3991. doi: 10.1099/mic.0.034991-0. Epub 2009 Oct 8.
6
Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.
Nat Rev Microbiol. 2009 Mar;7(3):206-14. doi: 10.1038/nrmicro2069. Epub 2009 Feb 2.
7
Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion.
Mol Microbiol. 2009 Mar;71(5):1323-32. doi: 10.1111/j.1365-2958.2009.06607.x. Epub 2009 Jan 26.
9
Camelid immunoglobulins and nanobody technology.
Vet Immunol Immunopathol. 2009 Mar 15;128(1-3):178-83. doi: 10.1016/j.vetimm.2008.10.299. Epub 2008 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验