Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid 28049, Spain.
J Bacteriol. 2010 Nov;192(21):5588-602. doi: 10.1128/JB.00432-10. Epub 2010 Aug 27.
Autotransporters (ATs) are the largest group of proteins secreted by Gram-negative bacteria and include many virulence factors from human pathogens. ATs are synthesized as large precursors with a C-terminal domain that is inserted in the outer membrane (OM) and is essential for the translocation of an N-terminal passenger domain to the extracellular milieu. Several mechanisms have been proposed for AT secretion. Self-translocation models suggest transport across a hydrophilic channel formed by an internal pore of the β-barrel or by the oligomerization of C-terminal domains. Alternatively, an assisted-translocation model suggests that transport employs a conserved machinery of the bacterial OM such as the Bam complex. In this work we have investigated AT secretion by carrying out a comparative study to analyze the conserved biochemical and functional features of different C-terminal domains selected from ATs of gammaproteobacteria, betaproteobacteria, alphaproteobacteria, and epsilonproteobacteria. Our results indicate that C-terminal domains having an N-terminal α-helix and a β-barrel constitute functional transport units for the translocation of peptides and immunoglobulin domains with disulfide bonds. In vivo and in vitro analyses show that multimerization is not a conserved feature in AT C-terminal domains. Furthermore, we demonstrate that the deletion of the conserved α-helix severely impairs β-barrel folding and OM insertion and thereby blocks passenger domain secretion. These observations suggest that the AT β-barrel without its α-helix cannot form a stable hydrophilic channel in the OM for protein translocation. The implications of our data for an understanding of AT secretion are discussed.
自转运蛋白(ATs)是革兰氏阴性细菌分泌的最大蛋白组,其中包括许多人类病原体的毒力因子。ATs 作为具有 C 端结构域的大型前体合成,该结构域插入外膜(OM)中,对于 N 端载体结构域向细胞外环境的易位是必需的。已经提出了几种 AT 分泌机制。自转运模型表明,通过β桶内部孔或 C 端结构域的寡聚化形成的亲水性通道进行转运。或者,辅助转运模型表明,转运利用细菌 OM 的保守机制,例如 Bam 复合物。在这项工作中,我们通过进行比较研究来分析从γ变形菌、β变形菌、α变形菌和ε变形菌的 AT 中选择的不同 C 端结构域的保守生化和功能特征,来研究 AT 的分泌。我们的结果表明,具有 N 端α-螺旋和β桶的 C 端结构域构成了肽和具有二硫键的免疫球蛋白结构域易位的功能转运单元。体内和体外分析表明,多聚化不是 AT C 端结构域的保守特征。此外,我们证明保守的α-螺旋缺失严重损害β桶折叠和 OM 插入,从而阻止载体结构域的分泌。这些观察结果表明,AT 的β桶没有其α-螺旋就不能在外膜中形成稳定的亲水性通道以进行蛋白质转运。我们的数据对理解 AT 分泌的意义进行了讨论。