Suppr超能文献

中空纤维膜束中流动与氧传递的微观尺度建模

Micro-scale Modeling of Flow and Oxygen Transfer in Hollow Fiber Membrane Bundle.

作者信息

Taskin M Ertan, Fraser Katharine H, Zhang Tao, Griffith Bartley P, Wu Zhongjun J

机构信息

Artificial Organs Laboratory, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

出版信息

J Memb Sci. 2010 Oct 15;362(1-2):172-183. doi: 10.1016/j.memsci.2010.06.034.

Abstract

The aim of this work was to develop a modeling approach to solve the flow and oxygen transfer when the blood passes through the hollow-fiber membrane bundle. For this purpose, a "two-region" modeling approach was developed regarding the hollow fiber and blood regions. The oxygen transfer in these regions was defined with separate diffusion processes. Two dimensional single and multi-fiber geometries were created and flow solutions were obtained for a non-Newtonian fluid. The convection-diffusion-reaction equation was solved to produce the oxygen partial pressure distributions. As a benefit of coupling the interstitial flow field into the oxygen transfer through the hollow-fiber membrane bundle, the membrane resistance was taken into consideration. Thus, varying oxygen partial pressures were observed on the outer fiber surface, which is contrary to the common simplifying assumptions of negligible membrane resistance and uniform oxygen content on the fiber surface (Traditional approach). It was illustrated that, the current approach can be utilized to predict the mass transfer efficiencies without overestimating as compared to the predictions obtained with the traditional approach. Utilization of the current approach was found to be beneficial for the geometries with lower packing density which allows significant P(O2) variations on the fiber surfaces. For the geometries with dense packings, the above simplifying assumptions could be applicable. The model predictions were validated with the experimental measurements taken from a benchmark device.

摘要

这项工作的目的是开发一种建模方法,以解决血液流经中空纤维膜束时的流动和氧传递问题。为此,针对中空纤维和血液区域开发了一种“双区域”建模方法。这些区域中的氧传递通过单独的扩散过程来定义。创建了二维单纤维和多纤维几何结构,并获得了非牛顿流体的流动解。求解对流扩散反应方程以生成氧分压分布。通过将间质流场耦合到通过中空纤维膜束的氧传递中,考虑了膜阻力。因此,在外纤维表面观察到了变化的氧分压,这与通常简化的假设相反,即膜阻力可忽略不计且纤维表面氧含量均匀(传统方法)。结果表明,与传统方法获得的预测相比,当前方法可用于预测传质效率而不会高估。发现当前方法对于具有较低堆积密度的几何结构有益,这种结构允许纤维表面的P(O2)有显著变化。对于具有密集堆积的几何结构,上述简化假设可能适用。模型预测通过从基准装置进行的实验测量得到了验证。

相似文献

1
Micro-scale Modeling of Flow and Oxygen Transfer in Hollow Fiber Membrane Bundle.
J Memb Sci. 2010 Oct 15;362(1-2):172-183. doi: 10.1016/j.memsci.2010.06.034.
2
A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.
Int J Artif Organs. 2011 Mar;34(3):317-25. doi: 10.5301/ijao.2011.6494.
4
Computational Modeling of Oxygen Transfer in Artificial Lungs.
Artif Organs. 2018 Aug;42(8):786-799. doi: 10.1111/aor.13146. Epub 2018 Jul 24.
6
Numerical Investigation of Gas Exchange Processes in Hollow-Fiber Membrane Bundles.
ASAIO J. 2025 May 19. doi: 10.1097/MAT.0000000000002444.
8
Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
Artif Organs. 2011 Nov;35(11):1095-102. doi: 10.1111/j.1525-1594.2011.01365.x. Epub 2011 Oct 5.
9
Microstructured Hollow Fiber Membranes: Potential Fiber Shapes for Extracorporeal Membrane Oxygenators.
Membranes (Basel). 2021 May 20;11(5):374. doi: 10.3390/membranes11050374.

引用本文的文献

1
CFD Two-Phase Blood Model Predicting the Hematocrit Heterogeneity Inside Fiber Bundles of Blood Oxygenators.
Ann Biomed Eng. 2025 Feb;53(2):507-519. doi: 10.1007/s10439-024-03644-4. Epub 2024 Nov 12.
2
Computational Analysis of the Effects of Fiber Deformation on the Microstructure and Permeability of Blood Oxygenator Bundles.
Ann Biomed Eng. 2024 Apr;52(4):1091-1105. doi: 10.1007/s10439-024-03446-8. Epub 2024 Feb 13.
3
Microstructured Hollow Fiber Membranes: Potential Fiber Shapes for Extracorporeal Membrane Oxygenators.
Membranes (Basel). 2021 May 20;11(5):374. doi: 10.3390/membranes11050374.
4
Computational study of the blood flow in three types of 3D hollow fiber membrane bundles.
J Biomech Eng. 2013 Dec;135(12):121009. doi: 10.1115/1.4025717.

本文引用的文献

1
Computational design and in vitro characterization of an integrated maglev pump-oxygenator.
Artif Organs. 2009 Oct;33(10):805-17. doi: 10.1111/j.1525-1594.2009.00807.x. Epub 2009 Jul 22.
4
Modeling of blood flow in a balloon-pulsed intravascular respiratory catheter.
ASAIO J. 2007 Jul-Aug;53(4):464-8. doi: 10.1097/MAT.0b013e31805fe96d.
5
Pulsatile blood flow and oxygen transport past a circular cylinder.
J Biomech Eng. 2007 Apr;129(2):202-15. doi: 10.1115/1.2485961.
6
Application of polyimide membranes for biogas purification and enrichment.
J Hazard Mater. 2007 Jun 18;144(3):698-702. doi: 10.1016/j.jhazmat.2007.01.098. Epub 2007 Jan 30.
8
Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices.
Artif Organs. 2006 Jan;30(1):10-5. doi: 10.1111/j.1525-1594.2006.00150.x.
9
Evaluation of plasma resistant hollow fiber membranes for artificial lungs.
ASAIO J. 2004 Sep-Oct;50(5):491-7. doi: 10.1097/01.mat.0000138078.04558.fe.
10
Predicting membrane oxygenator pressure drop using computational fluid dynamics.
Artif Organs. 2002 Jul;26(7):600-7. doi: 10.1046/j.1525-1594.2002.07082.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验