Suppr超能文献

基于疏水核心预测残基间接触簇

Prediction of inter-residue contact clusters from hydrophobic cores.

作者信息

Chen Peng, Liu Chunmei, Burge Legand, Mahmood Mohammad, Southerland William, Gloster Clay

机构信息

Department of Systems and Computer Science, Howard University, 2400 Sixth Street, NW Washington, DC 20059, USA.

出版信息

Int J Data Min Bioinform. 2008 Dec 11;2008:703-708. doi: 10.1109/ICMLA.2008.74.

Abstract

A contact map is a key factor representing a specific protein structure. To simplify the protein contact map prediction, we predict the inter-residue contact clusters centered at the groups of their surrounding inter-residue contacts. In this paper, we adopt a Support Vector Machine (SVM)-based approach to predict the inter-residue contact cluster centers. The input of the SVM predictor includes sequence profile, evolutionary rate and predicted secondary structure. The SVM predictor is based on hydrophobic cores that may be considered as locations of the inter-residue contact clusters. About 35% of clustering centers of inter-residue contacts can be predicted accurately.

摘要

接触图是表示特定蛋白质结构的关键因素。为了简化蛋白质接触图预测,我们预测以其周围残基间接触基团为中心的残基间接触簇。在本文中,我们采用基于支持向量机(SVM)的方法来预测残基间接触簇中心。SVM预测器的输入包括序列概况、进化速率和预测的二级结构。SVM预测器基于疏水核心,疏水核心可被视为残基间接触簇的位置。约35%的残基间接触聚类中心能够被准确预测。

相似文献

1
Prediction of inter-residue contact clusters from hydrophobic cores.
Int J Data Min Bioinform. 2008 Dec 11;2008:703-708. doi: 10.1109/ICMLA.2008.74.
2
Prediction of inter-residue contact clusters from hydrophobic cores.
Int J Data Min Bioinform. 2010;4(6):722-34. doi: 10.1504/ijdmb.2010.037549.
3
OMPcontact: An Outer Membrane Protein Inter-Barrel Residue Contact Prediction Method.
J Comput Biol. 2017 Mar;24(3):217-228. doi: 10.1089/cmb.2015.0236. Epub 2016 Aug 11.
4
ISSEC: inferring contacts among protein secondary structure elements using deep object detection.
BMC Bioinformatics. 2020 Nov 5;21(1):503. doi: 10.1186/s12859-020-03793-y.
5
A two-stage approach for improved prediction of residue contact maps.
BMC Bioinformatics. 2006 Mar 30;7:180. doi: 10.1186/1471-2105-7-180.
6
R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
Bioinformatics. 2016 Aug 15;32(16):2435-43. doi: 10.1093/bioinformatics/btw181. Epub 2016 Apr 10.
9
A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
Bioinformatics. 2008 Apr 1;24(7):924-31. doi: 10.1093/bioinformatics/btn069. Epub 2008 Feb 22.

引用本文的文献

本文引用的文献

1
Predicting key long-range interaction sites by B-factors.
Protein Pept Lett. 2008;15(5):478-83. doi: 10.2174/092986608784567573.
2
Predicting contact map using radial basis function neural network with conformational energy function.
Int J Bioinform Res Appl. 2008;4(2):123-36. doi: 10.1504/IJBRA.2008.01834.
3
Improved residue contact prediction using support vector machines and a large feature set.
BMC Bioinformatics. 2007 Apr 2;8:113. doi: 10.1186/1471-2105-8-113.
4
A two-stage approach for improved prediction of residue contact maps.
BMC Bioinformatics. 2006 Mar 30;7:180. doi: 10.1186/1471-2105-7-180.
5
Predicting protein interaction sites from residue spatial sequence profile and evolution rate.
FEBS Lett. 2006 Jan 23;580(2):380-4. doi: 10.1016/j.febslet.2005.11.081. Epub 2005 Dec 19.
7
PROFcon: novel prediction of long-range contacts.
Bioinformatics. 2005 Jul 1;21(13):2960-8. doi: 10.1093/bioinformatics/bti454. Epub 2005 May 12.
8
Evolution and similarity evaluation of protein structures in contact map space.
Proteins. 2005 May 1;59(2):196-204. doi: 10.1002/prot.20415.
9
Prediction of distant residue contacts with the use of evolutionary information.
Proteins. 2005 Mar 1;58(4):935-49. doi: 10.1002/prot.20370.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验