School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab038.
Protein-protein interactions play a fundamental role in all cellular processes. Therefore, determining the structure of protein-protein complexes is crucial to understand their molecular mechanisms and develop drugs targeting the protein-protein interactions. Recently, deep learning has led to a breakthrough in intra-protein contact prediction, achieving an unusual high accuracy in recent Critical Assessment of protein Structure Prediction (CASP) structure prediction challenges. However, due to the limited number of known homologous protein-protein interactions and the challenge to generate joint multiple sequence alignments of two interacting proteins, the advances in inter-protein contact prediction remain limited. Here, we have proposed a deep learning model to predict inter-protein residue-residue contacts across homo-oligomeric protein interfaces, named as DeepHomo. Unlike previous deep learning approaches, we integrated intra-protein distance map and inter-protein docking pattern, in addition to evolutionary coupling, sequence conservation, and physico-chemical information of monomers. DeepHomo was extensively tested on both experimentally determined structures and realistic CASP-Critical Assessment of Predicted Interaction (CAPRI) targets. It was shown that DeepHomo achieved a high precision of >60% for the top predicted contact and outperformed state-of-the-art direct-coupling analysis and machine learning-based approaches. Integrating predicted inter-chain contacts into protein-protein docking significantly improved the docking accuracy on the benchmark dataset of realistic homo-dimeric targets from CASP-CAPRI experiments. DeepHomo is available at http://huanglab.phys.hust.edu.cn/DeepHomo/.
蛋白质-蛋白质相互作用在所有细胞过程中起着基础作用。因此,确定蛋白质-蛋白质复合物的结构对于理解其分子机制和开发针对蛋白质-蛋白质相互作用的药物至关重要。最近,深度学习在预测蛋白质内接触方面取得了突破,在最近的蛋白质结构预测关键评估(Critical Assessment of protein Structure Prediction,CASP)结构预测挑战中取得了异常高的准确性。然而,由于已知同源蛋白质-蛋白质相互作用的数量有限,并且难以生成两个相互作用的蛋白质的联合多重序列比对,因此蛋白质间接触预测的进展仍然有限。在这里,我们提出了一种深度学习模型来预测同聚体蛋白质界面上的蛋白质间残基-残基接触,称为 DeepHomo。与以前的深度学习方法不同,我们整合了蛋白质内距离图和蛋白质间对接模式,以及进化耦合、单体序列保守性和物理化学信息。DeepHomo 在实验确定的结构和真实的 CASP-关键评估的预测相互作用(CAPRI)目标上进行了广泛的测试。结果表明,DeepHomo 对前预测接触的精度超过 60%,优于最先进的直接耦合分析和基于机器学习的方法。将预测的链间接触整合到蛋白质-蛋白质对接中,显著提高了来自 CASP-CAPRI 实验的真实同二聚体靶标基准数据集的对接准确性。DeepHomo 可在 http://huanglab.phys.hust.edu.cn/DeepHomo/ 获得。