Suppr超能文献

纳米孔测序:生命密码的电学测量

Nanopore Sequencing: Electrical Measurements of the Code of Life.

作者信息

Timp Winston, Mirsaidov Utkur M, Wang Deqiang, Comer Jeff, Aksimentiev Aleksei, Timp Gregory

机构信息

Center for Epigenetics, Department of Medicine, Johns Hopkins University, Baltimore, MD21205 USA.

出版信息

IEEE Trans Nanotechnol. 2010 May 1;9(3):281-294. doi: 10.1109/TNANO.2010.2044418.

Abstract

Sequencing a single molecule of deoxyribonucleic acid (DNA) using a nanopore is a revolutionary concept because it combines the potential for long read lengths (>5 kbp) with high speed (1 bp/10 ns), while obviating the need for costly amplification procedures due to the exquisite single molecule sensitivity. The prospects for implementing this concept seem bright. The cost savings from the removal of required reagents, coupled with the speed of nanopore sequencing places the $1000 genome within grasp. However, challenges remain: high fidelity reads demand stringent control over both the molecular configuration in the pore and the translocation kinetics. The molecular configuration determines how the ions passing through the pore come into contact with the nucleotides, while the translocation kinetics affect the time interval in which the same nucleotides are held in the constriction as the data is acquired. Proteins like α-hemolysin and its mutants offer exquisitely precise self-assembled nanopores and have demonstrated the facility for discriminating individual nucleotides, but it is currently difficult to design protein structure ab initio, which frustrates tailoring a pore for sequencing genomic DNA. Nanopores in solid-state membranes have been proposed as an alternative because of the flexibility in fabrication and ease of integration into a sequencing platform. Preliminary results have shown that with careful control of the dimensions of the pore and the shape of the electric field, control of DNA translocation through the pore is possible. Furthermore, discrimination between different base pairs of DNA may be feasible. Thus, a nanopore promises inexpensive, reliable, high-throughput sequencing, which could thrust genomic science into personal medicine.

摘要

利用纳米孔对单分子脱氧核糖核酸(DNA)进行测序是一个革命性的概念,因为它将长读长(>5 kbp)的潜力与高速(1 bp/10 ns)相结合,同时由于其出色的单分子灵敏度而无需昂贵的扩增程序。实现这一概念的前景似乎很光明。去除所需试剂节省的成本,再加上纳米孔测序的速度,使得1000美元基因组测序成为可能。然而,挑战依然存在:高保真度的读取需要对孔内的分子构型和易位动力学进行严格控制。分子构型决定了通过孔的离子如何与核苷酸接触,而易位动力学则影响在获取数据时相同核苷酸在缩窄处停留的时间间隔。像α-溶血素及其突变体这样的蛋白质提供了极其精确的自组装纳米孔,并已证明能够区分单个核苷酸,但目前从头设计蛋白质结构很困难,这阻碍了为测序基因组DNA量身定制一个孔。固态膜中的纳米孔已被提议作为一种替代方案,因为其制造具有灵活性且易于集成到测序平台中。初步结果表明,通过仔细控制孔的尺寸和电场形状,可以控制DNA通过孔的易位。此外,区分DNA的不同碱基对可能是可行的。因此,纳米孔有望实现廉价、可靠、高通量的测序,这可能会将基因组科学推向个人医疗领域。

相似文献

1
Nanopore Sequencing: Electrical Measurements of the Code of Life.纳米孔测序:生命密码的电学测量
IEEE Trans Nanotechnol. 2010 May 1;9(3):281-294. doi: 10.1109/TNANO.2010.2044418.
5
Molecular diagnostics for personal medicine using a nanopore.基于纳米孔的个体化医疗用分子诊断
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jul-Aug;2(4):367-81. doi: 10.1002/wnan.86.
9
Solid-state nanopores towards single-molecule DNA sequencing.固态纳米孔用于单分子 DNA 测序。
J Hum Genet. 2020 Jan;65(1):69-77. doi: 10.1038/s10038-019-0655-8. Epub 2019 Aug 16.

引用本文的文献

4
Resolving the Size and Charge of Small Particles: A Predictive Model of Nanopore Mechanics.解析小颗粒的尺寸和电荷:纳米孔力学的预测模型
J Phys Chem C Nanomater Interfaces. 2024 Aug 9;128(41):17619-17630. doi: 10.1021/acs.jpcc.4c02722. eCollection 2024 Oct 17.
5
Decoding the microbial universe with metagenomics: a brief insight.用宏基因组学解码微生物世界:简要概述
Front Genet. 2023 Apr 24;14:1119740. doi: 10.3389/fgene.2023.1119740. eCollection 2023.
6
A Comprehensive Review of Performance of Next-Generation Sequencing Platforms.下一代测序平台性能的全面综述。
Biomed Res Int. 2022 Sep 29;2022:3457806. doi: 10.1155/2022/3457806. eCollection 2022.
7
A New Fast Phasing Method Based On Haplotype Subtraction.一种基于单体型相减的新型快速分相方法。
J Mol Diagn. 2019 May;21(3):427-436. doi: 10.1016/j.jmoldx.2018.12.004. Epub 2019 Mar 11.
8
Graphene Nanopores for Protein Sequencing.用于蛋白质测序的石墨烯纳米孔
Adv Funct Mater. 2016 Jul 19;26(27):4830-4838. doi: 10.1002/adfm.201601272. Epub 2016 Jun 9.
9
Modeling thermophoretic effects in solid-state nanopores.固态纳米孔中热泳效应的建模
J Comput Electron. 2014 Dec 1;13(4):826-838. doi: 10.1007/s10825-014-0594-8.
10
Close encounters with DNA.与DNA的亲密接触。
J Phys Condens Matter. 2014 Oct 15;26(41):413101. doi: 10.1088/0953-8984/26/41/413101. Epub 2014 Sep 19.

本文引用的文献

2
Nanopores in solid-state membranes engineered for single molecule detection.固态膜中的纳米孔,用于单分子检测。
Nanotechnology. 2010 Feb 10;21(6):065502. doi: 10.1088/0957-4484/21/6/065502. Epub 2010 Jan 11.
3
Single-molecule sequencing of an individual human genome.对单个人类基因组进行单分子测序。
Nat Biotechnol. 2009 Sep;27(9):847-50. doi: 10.1038/nbt.1561. Epub 2009 Aug 10.
6
Reverse DNA translocation through a solid-state nanopore by magnetic tweezers.利用磁镊通过固态纳米孔进行DNA反向转位。
Nanotechnology. 2009 May 6;20(18):185101. doi: 10.1088/0957-4484/20/18/185101. Epub 2009 Apr 14.
9
Continuous base identification for single-molecule nanopore DNA sequencing.单分子纳米孔DNA测序的连续碱基识别
Nat Nanotechnol. 2009 Apr;4(4):265-70. doi: 10.1038/nnano.2009.12. Epub 2009 Feb 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验