Powers J, Powers T
Department of Statistics, Ohio State University, Columbus 43210.
Ann Rech Vet. 1990;21 Suppl 1:87S-92S.
The objectives of this investigation are: 1) to describe techniques for determining the validity of the assumptions; 2) to suggest data transformations which may validate the use of parametric procedures; and 3) to describe a non-parametric alternative to the analysis of variance for crossover designs. Two assumptions common to all parametric procedures include the underlying normal distribution of the observations and equality of variances across treatment groups. Normal probability plots and/or stem and leaf plots are good diagnostic techniques to address the assumption of normality, while Bartlett's test is the most common method of determining equality of variances. To evaluate bioequivalence data, the Food and Drug Administration suggests the use of analysis of variance for crossover designs. If the underlying assumptions are valid, the appropriate statistical models are well known. On the other hand, if the assumptions are not valid, the investigator has one of two choices: 1) transform the data in such a way as to satisfy the assumptions, or 2) use a non-parametric procedure. Square root or logarithmic transformations are commonly used in this situation. However, if a suitable transformation cannot be found, then a non-parametric procedure should be used. Koch (Biometrics (1972) 28, 577-584) developed a non-parametric crossover test, which is relatively easy to apply, but the corresponding power calculations required by the FDA are less obvious.
1)描述确定假设有效性的技术;2)提出可能使参数程序的使用有效的数据变换;3)描述交叉设计中方差分析的非参数替代方法。所有参数程序共有的两个假设包括观测值的潜在正态分布以及各治疗组方差的齐性。正态概率图和/或茎叶图是检验正态性假设的良好诊断技术,而巴特利特检验是确定方差齐性最常用的方法。为了评估生物等效性数据,美国食品药品监督管理局建议对交叉设计使用方差分析。如果潜在假设有效,合适的统计模型是众所周知的。另一方面,如果假设无效,研究者有两种选择:1)以满足假设的方式变换数据,或2)使用非参数程序。在这种情况下通常使用平方根或对数变换。然而,如果找不到合适的变换,那么就应该使用非参数程序。科赫(《生物统计学》(1972年)28卷,第577 - 584页)开发了一种非参数交叉检验,该检验相对容易应用,但美国食品药品监督管理局要求的相应功效计算不太明显。