Sohn Jin Sun, Tseng Yu-Hau, Li Shuwang, Voigt Axel, Lowengrub John S
Department of Mathematics, University of California, Irvine, USA.
J Comput Phys. 2010;229(1):119-144. doi: 10.1016/j.jcp.2009.09.017.
We develop and investigate numerically a thermodynamically consistent model of two-dimensional multicomponent vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that accounts for different lipid surface phases, the excess energy (line energy) associated with surface phase domain boundaries, bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies on an analysis of the equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redistribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evolution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are small.
我们开发并通过数值方法研究了不可压缩粘性流体中二维多组分囊泡的热力学一致模型。该模型是使用能量变分方法推导出来的,该方法考虑了不同的脂质表面相、与表面相域边界相关的过剩能量(线能量)、弯曲能量、自发曲率、局部不可伸长性以及通过斯托克斯方程的流体流动。由于流体的不可压缩性和囊泡膜的局部不可伸长性,这些方程是高阶(四阶)非线性和非局部的。为了数值求解这些方程,我们开发了一种非刚性的伪谱边界积分方法,该方法依赖于在小尺度下对方程的分析。该算法与Veerapaneni等人[81]最近为均匀囊泡开发的算法密切相关,尽管我们使用了不同且更有效的时间步长算法以及不可伸长性方程的重新表述。我们展示了在初始静止流体中多组分囊泡的模拟,并研究了改变脂质相初始不稳定混合物的平均表面浓度的影响。然后这些相会重新分布并改变囊泡的形态及其动力学。当引入外加剪切力时,初始为椭圆形的囊泡会像坦克履带一样移动并达到稳定的形状和表面相分布。一个足够细长的囊泡会翻滚,并且具有不同弯曲刚度和自发曲率的不同表面相的存在会导致囊泡形态在弯曲刚度和自发曲率较小的区域弯曲时发生复杂的演变。