Suppr超能文献

粘性流体中局部不可伸长囊泡的扩散界面模型

Diffuse interface models of locally inextensible vesicles in a viscous fluid.

作者信息

Aland Sebastian, Egerer Sabine, Lowengrub John, Voigt Axel

机构信息

Institut für wissenschaftliches Rechnen, TU Dresden, 01062 Dresden, Germany.

Department of Mathematics, and Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697, USA.

出版信息

J Comput Phys. 2014 Nov 15;277:32-47. doi: 10.1016/j.jcp.2014.08.016.

Abstract

We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region.

摘要

我们提出了一种新的扩散界面模型,用于描述粘性流体中具有惯性力的不可拉伸囊泡的动力学。这项工作的一个新特点是在扩散界面背景下实现了局部不可拉伸条件。通过使用局部拉格朗日乘子来强制实现局部不可拉伸性,该乘子在界面处提供必要的张力。我们为局部拉格朗日乘子引入了一个新方程,其解本质上提供了乘子在界面外的调和扩展,同时在界面附近保持局部不可拉伸约束。我们还开发了一种局部松弛方案,该方案动态校正局部拉伸/压缩误差,从而防止其积累。进行了渐近分析,结果表明我们的新系统收敛到不可拉伸尖锐界面模型的松弛版本。这也通过数值验证。为了求解方程,我们使用了一种自适应有限元方法,该方法在纳维 - 斯托克斯方程和扩散界面不可拉伸性方程之间进行隐式耦合。在不同雷诺数下对剪切流中单个囊泡的数值模拟表明,在执行局部不可拉伸性时的误差可能会积累,并导致翻滚状态下动力学的巨大差异以及在坦克履带状态下囊泡倾斜角度的较小差异。结果表明,局部松弛算法能够非常有效地防止拉伸和压缩误差的积累。对拉伸流中两个囊泡的模拟表明,当囊泡靠得很近时,局部不可拉伸性通过抑制近接触区域的流体排放起着重要作用。

相似文献

1
Diffuse interface models of locally inextensible vesicles in a viscous fluid.
J Comput Phys. 2014 Nov 15;277:32-47. doi: 10.1016/j.jcp.2014.08.016.
3
Dynamics of multicomponent vesicles in a viscous fluid.
J Comput Phys. 2010;229(1):119-144. doi: 10.1016/j.jcp.2009.09.017.
4
A theoretical study on the dynamics of a compound vesicle in shear flow.
Soft Matter. 2019 Sep 21;15(35):6994-7017. doi: 10.1039/c9sm01102a. Epub 2019 Aug 21.
5
Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 2):066321. doi: 10.1103/PhysRevE.86.066321. Epub 2012 Dec 26.
6
Numerical simulations of vesicle and bubble dynamics in two-dimensional four-roll mill flows.
Phys Rev E. 2017 May;95(5-1):053105. doi: 10.1103/PhysRevE.95.053105. Epub 2017 May 10.
7
Numerical computations of the dynamics of fluidic membranes and vesicles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052704. doi: 10.1103/PhysRevE.92.052704. Epub 2015 Nov 3.
8
New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
East Asian J Applied Math. 2011 Jan 1;1(2):155-171. doi: 10.4208/eajam.030510.250910a.
10
Dynamics of a viscous vesicle in linear flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 2):016313. doi: 10.1103/PhysRevE.75.016313. Epub 2007 Jan 30.

引用本文的文献

1
A general computational framework for the dynamics of single- and multi-phase vesicles and membranes.
J Comput Phys. 2022 Feb 1;450. doi: 10.1016/j.jcp.2021.110815. Epub 2021 Nov 8.
2
Tumor growth and calcification in evolving microenvironmental geometries.
J Theor Biol. 2019 Feb 21;463:138-154. doi: 10.1016/j.jtbi.2018.12.006. Epub 2018 Dec 5.
3
A stable numerical method for the dynamics of fluidic membranes.
Numer Math (Heidelb). 2016;134(4):783-822. doi: 10.1007/s00211-015-0787-5. Epub 2016 Feb 23.
4
A two phase field model for tracking vesicle-vesicle adhesion.
J Math Biol. 2016 Nov;73(5):1293-1319. doi: 10.1007/s00285-016-0994-4. Epub 2016 Mar 24.
6
A mechanism for cell motility by active polar gels.
J R Soc Interface. 2015 Jun 6;12(107). doi: 10.1098/rsif.2015.0161.

本文引用的文献

1
Vesicles and red blood cells in shear flow.
Soft Matter. 2008 Mar 20;4(4):653-657. doi: 10.1039/b716612e.
2
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.
Soft Matter. 2013 Oct 28;9(40):9651-60. doi: 10.1039/c3sm51823j.
3
Signaling networks and cell motility: a computational approach using a phase field description.
J Math Biol. 2014 Jul;69(1):91-112. doi: 10.1007/s00285-013-0704-4. Epub 2013 Jul 9.
4
Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 2):066321. doi: 10.1103/PhysRevE.86.066321. Epub 2012 Dec 26.
6
Red blood cell dynamics: from cell deformation to ATP release.
Integr Biol (Camb). 2011 Oct;3(10):972-81. doi: 10.1039/c1ib00044f. Epub 2011 Sep 21.
7
Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects.
Q Rev Biophys. 2011 Nov;44(4):391-432. doi: 10.1017/S0033583511000047. Epub 2011 Jul 1.
8
SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE DOMAIN APPROACH.
Commun Math Sci. 2009 Mar 1;7(1):81-107. doi: 10.4310/cms.2009.v7.n1.a4.
10
The use of computational fluid dynamics in the development of ventricular assist devices.
Med Eng Phys. 2011 Apr;33(3):263-80. doi: 10.1016/j.medengphy.2010.10.014. Epub 2010 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验