Aland Sebastian, Egerer Sabine, Lowengrub John, Voigt Axel
Institut für wissenschaftliches Rechnen, TU Dresden, 01062 Dresden, Germany.
Department of Mathematics, and Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697, USA.
J Comput Phys. 2014 Nov 15;277:32-47. doi: 10.1016/j.jcp.2014.08.016.
We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region.
我们提出了一种新的扩散界面模型,用于描述粘性流体中具有惯性力的不可拉伸囊泡的动力学。这项工作的一个新特点是在扩散界面背景下实现了局部不可拉伸条件。通过使用局部拉格朗日乘子来强制实现局部不可拉伸性,该乘子在界面处提供必要的张力。我们为局部拉格朗日乘子引入了一个新方程,其解本质上提供了乘子在界面外的调和扩展,同时在界面附近保持局部不可拉伸约束。我们还开发了一种局部松弛方案,该方案动态校正局部拉伸/压缩误差,从而防止其积累。进行了渐近分析,结果表明我们的新系统收敛到不可拉伸尖锐界面模型的松弛版本。这也通过数值验证。为了求解方程,我们使用了一种自适应有限元方法,该方法在纳维 - 斯托克斯方程和扩散界面不可拉伸性方程之间进行隐式耦合。在不同雷诺数下对剪切流中单个囊泡的数值模拟表明,在执行局部不可拉伸性时的误差可能会积累,并导致翻滚状态下动力学的巨大差异以及在坦克履带状态下囊泡倾斜角度的较小差异。结果表明,局部松弛算法能够非常有效地防止拉伸和压缩误差的积累。对拉伸流中两个囊泡的模拟表明,当囊泡靠得很近时,局部不可拉伸性通过抑制近接触区域的流体排放起着重要作用。