Suppr超能文献

在生理温度和pH值且无去污剂的情况下的筏式结构组成。

Raft composition at physiological temperature and pH in the absence of detergents.

作者信息

Ayuyan Artem G, Cohen Fredric S

机构信息

Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois 60612-3864, USA.

出版信息

Biophys J. 2008 Apr 1;94(7):2654-66. doi: 10.1529/biophysj.107.118596. Epub 2007 Nov 9.

Abstract

Biological rafts were identified and isolated at 37 degrees C and neutral pH. The strategy for isolating rafts utilized membrane tension to generate large domains. For lipid compositions that led only to microscropically unresolvable rafts in lipid bilayers, membrane tension led to the appearance of large, observable rafts. The large rafts converted back to small ones when tension was relieved. Thus, tension reversibly controls raft enlargement. For cells, application of membrane tension resulted in several types of large domains; one class of the domains was identified as rafts. Tension was generated in several ways, and all yielded raft fractions that had essentially the same composition, validating the principle of tension as a means to merge small rafts into large rafts. It was demonstrated that sphingomyelin-rich vesicles do not rise during centrifugation in sucrose gradients because they resist lysis, necessitating that, contrary to current experimental practice, membrane material be placed toward the top of a gradient for raft fractionation. Isolated raft fractions were enriched in a GPI-linked protein, alkaline phosphatase, and were poor in Na(+)-K(+) ATPase. Sphingomyelin and gangliosides were concentrated in rafts, the expected lipid raft composition. Cholesterol, however, was distributed equally between raft and nonraft fractions, contrary to the conventional view.

摘要

在37摄氏度和中性pH条件下鉴定并分离出生物筏。分离筏的策略利用膜张力来产生大的结构域。对于那些在脂质双层中仅导致显微镜下无法分辨的筏的脂质组成,膜张力导致出现大的、可观察到的筏。当张力解除时,大筏会变回小筏。因此,张力可逆地控制筏的扩大。对于细胞,施加膜张力会产生几种类型的大结构域;其中一类结构域被鉴定为筏。通过几种方式产生张力,并且所有方法得到的筏组分基本上具有相同的组成,这验证了张力作为将小筏合并成大筏的一种手段的原理。结果表明,富含鞘磷脂的囊泡在蔗糖梯度离心中不会上浮,因为它们抗裂解,这就要求与当前的实验做法相反,将膜材料置于梯度顶部用于筏分级分离。分离出的筏组分富含糖基磷脂酰肌醇连接蛋白、碱性磷酸酶,而钠钾ATP酶含量较低。鞘磷脂和神经节苷脂集中在筏中,这是预期的脂质筏组成。然而,与传统观点相反,胆固醇在筏和非筏组分之间平均分布。

相似文献

1
Raft composition at physiological temperature and pH in the absence of detergents.
Biophys J. 2008 Apr 1;94(7):2654-66. doi: 10.1529/biophysj.107.118596. Epub 2007 Nov 9.
3
Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
Subcell Biochem. 2004;37:167-215. doi: 10.1007/978-1-4757-5806-1_5.
4
Transbilayer peptide sorting between raft and nonraft bilayers: comparisons of detergent extraction and confocal microscopy.
Biophys J. 2005 Aug;89(2):1102-8. doi: 10.1529/biophysj.105.062380. Epub 2005 May 20.
7
Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.
Biochem Biophys Res Commun. 2013 Dec 6;442(1-2):62-7. doi: 10.1016/j.bbrc.2013.11.009. Epub 2013 Nov 9.
9
Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents.
Platelets. 2016 Nov;27(7):634-641. doi: 10.3109/09537104.2016.1174203. Epub 2016 May 16.
10
Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
J Biol Chem. 2004 Mar 12;279(11):9997-10004. doi: 10.1074/jbc.M309992200. Epub 2003 Dec 29.

引用本文的文献

2
Sterol-lipids enable large-scale, liquid-liquid phase separation in bilayer membranes of only two components.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2401241121. doi: 10.1073/pnas.2401241121. Epub 2024 Sep 9.
3
Osmotic Pressure and Its Biological Implications.
Int J Mol Sci. 2024 Mar 14;25(6):3310. doi: 10.3390/ijms25063310.
4
Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools.
Biophys J. 2024 Jun 4;123(11):1329-1341. doi: 10.1016/j.bpj.2023.12.023. Epub 2023 Dec 29.
5
Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling?
Molecules. 2023 Dec 2;28(23):7909. doi: 10.3390/molecules28237909.
6
The Membrane-Mediated Interaction of Liquid-Ordered Lipid Domains in the Presence of Amphipathic Peptides.
Membranes (Basel). 2023 Sep 28;13(10):816. doi: 10.3390/membranes13100816.
8
A Theoretical Basis for Nanodomains.
J Membr Biol. 2022 Oct;255(4-5):451-460. doi: 10.1007/s00232-021-00213-x. Epub 2022 Jan 27.
9
Amphipathic Peptides Impede Lipid Domain Fusion in Phase-Separated Membranes.
Membranes (Basel). 2021 Oct 20;11(11):797. doi: 10.3390/membranes11110797.

本文引用的文献

1
Lateral tension increases the line tension between two domains in a lipid bilayer membrane.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 1):011919. doi: 10.1103/PhysRevE.75.011919. Epub 2007 Jan 18.
2
Phase boundaries and biological membranes.
Annu Rev Biophys Biomol Struct. 2007;36:63-77. doi: 10.1146/annurev.biophys.36.040306.132721.
3
Lipid rafts: at a crossroad between cell biology and physics.
Nat Cell Biol. 2007 Jan;9(1):7-14. doi: 10.1038/ncb0107-7.
4
Lipid rafts, detergent-resistant membranes, and raft targeting signals.
Physiology (Bethesda). 2006 Dec;21:430-9. doi: 10.1152/physiol.00032.2006.
5
Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb.
Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1328-37. doi: 10.1152/ajpregu.00166.2006. Epub 2006 Nov 2.
6
Lipid rafts: now you see them, now you don't.
Nat Immunol. 2006 Nov;7(11):1139-42. doi: 10.1038/ni1405.
7
Isolation of membrane rafts and signaling complexes.
Methods Mol Biol. 2006;332:169-79. doi: 10.1385/1-59745-048-0:167.
9
Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function.
J Lipid Res. 2006 Jul;47(7):1597-8. doi: 10.1194/jlr.E600002-JLR200. Epub 2006 Apr 27.
10
Lipid rafts: contentious only from simplistic standpoints.
Nat Rev Mol Cell Biol. 2006 Jun;7(6):456-62. doi: 10.1038/nrm1925.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验