新型关联策略结合拷贝数变异分析鉴定人类疾病新的风险基因座。
Novel association strategy with copy number variation for identifying new risk Loci of human diseases.
机构信息
The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
出版信息
PLoS One. 2010 Aug 20;5(8):e12185. doi: 10.1371/journal.pone.0012185.
BACKGROUND
Copy number variations (CNV) are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.
METHODOLOGY/PRINCIPAL FINDINGS: Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP) signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn's disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.
CONCLUSIONS/SIGNIFICANCE: Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases.
背景
拷贝数变异(CNV)是人类疾病的重要遗传病因;然而,缺乏统计模型阻碍了对大规模队列中与疾病相关的 CNV 的系统测试。
方法/主要发现:在这里,我们开发了一种新的综合策略来检测全基因组病例对照研究中的 CNV 关联。我们使用经过良好训练的隐马尔可夫模型将单核苷酸多态性(SNP)信号转换为拷贝数状态。我们通过 SNP 位点特异性测试映射易感性 CNV 位置,以应对 CNV 的生理复杂性。我们还通过进一步的基于窗口的 CNV 模式聚类来确保相关 CNV 的可信度。使用七种疾病的全基因组数据来测试我们的策略,总共确定了与七种疾病相关的 36 个新的易感性 CNV 位置:5 个与双相情感障碍有关,4 个与冠心病有关,1 个与克罗恩病有关,7 个与高血压有关,9 个与类风湿关节炎有关,7 型与 1 型糖尿病有关,3 型与 2 型糖尿病有关。这些鉴定的位置中有 15 个通过先前研究的基因型关联和生理功能得到了验证,这为我们的结果提供了进一步的信心。值得注意的是,与双相情感障碍相关的基因集中在磷酸肌醇/钙信号转导中,这是双相情感障碍中一个众所周知的受影响途径,这进一步支持 CNV 对双相情感障碍有影响。
结论/意义:我们的结果证明了我们的 CNV 关联分析的有效性和稳健性,并为发现人类疾病的新相关基因座提供了另一种途径。