Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy.
PLoS One. 2010 Aug 16;5(8):e12214. doi: 10.1371/journal.pone.0012214.
Predicting off-targets by computational methods is getting increasing importance in early drug discovery stages. We herewith present a computational method based on binding site three-dimensional comparisons, which prompted us to investigate the cross-reaction of protein kinase inhibitors with synapsin I, an ATP-binding protein regulating neurotransmitter release in the synapse. Systematic pair-wise comparison of the staurosporine-binding site of the proto-oncogene Pim-1 kinase with 6,412 druggable protein-ligand binding sites suggested that the ATP-binding site of synapsin I may recognize the pan-kinase inhibitor staurosporine. Biochemical validation of this hypothesis was realized by competition experiments of staurosporine with ATP-gamma(35)S for binding to synapsin I. Staurosporine, as well as three other inhibitors of protein kinases (cdk2, Pim-1 and casein kinase type 2), effectively bound to synapsin I with nanomolar affinities and promoted synapsin-induced F-actin bundling. The selective Pim-1 kinase inhibitor quercetagetin was shown to be the most potent synapsin I binder (IC50 = 0.15 microM), in agreement with the predicted binding site similarities between synapsin I and various protein kinases. Other protein kinase inhibitors (protein kinase A and chk1 inhibitor), kinase inhibitors (diacylglycerolkinase inhibitor) and various other ATP-competitors (DNA topoisomerase II and HSP-90alpha inhibitors) did not bind to synapsin I, as predicted from a lower similarity of their respective ATP-binding sites to that of synapsin I. The present data suggest that the observed downregulation of neurotransmitter release by some but not all protein kinase inhibitors may also be contributed by a direct binding to synapsin I and phosphorylation-independent perturbation of synapsin I function. More generally, the data also demonstrate that cross-reactivity with various targets may be detected by systematic pair-wise similarity measurement of ligand-annotated binding sites.
基于结合位点三维比较的计算方法在药物早期发现阶段变得越来越重要。我们在此提出了一种计算方法,该方法基于结合位点三维比较,促使我们研究蛋白激酶抑制剂与突触结合蛋白 I 的交叉反应,后者是一种调节突触中神经递质释放的 ATP 结合蛋白。原癌基因 Pim-1 激酶的星形孢菌素结合位点与 6412 个可成药蛋白配体结合位点的系统成对比较表明,突触结合蛋白 I 的 ATP 结合位点可能识别泛激酶抑制剂星形孢菌素。通过星形孢菌素与 ATP-γ(35)S 竞争结合突触结合蛋白 I 的竞争实验验证了这一假说。星形孢菌素以及其他三种蛋白激酶抑制剂(cdk2、Pim-1 和酪蛋白激酶 2)以纳摩尔亲和力有效地与突触结合蛋白 I 结合,并促进突触结合蛋白 I 诱导的 F-肌动蛋白成束。选择性 Pim-1 激酶抑制剂槲皮素是最强效的突触结合蛋白 I 结合物(IC50=0.15 μM),与突触结合蛋白 I 与各种蛋白激酶之间预测的结合位点相似性一致。其他蛋白激酶抑制剂(蛋白激酶 A 和 chk1 抑制剂)、激酶抑制剂(二酰基甘油激酶抑制剂)和各种其他 ATP 竞争物(DNA 拓扑异构酶 II 和 HSP-90α 抑制剂)如预测的那样,由于它们各自的 ATP 结合位点与突触结合蛋白 I 的相似性较低,因此不与突触结合蛋白 I 结合。目前的数据表明,一些但不是所有蛋白激酶抑制剂观察到的神经递质释放下调可能也归因于与突触结合蛋白 I 的直接结合以及突触结合蛋白 I 功能的磷酸化非依赖性干扰。更普遍地说,这些数据还表明,通过系统地对配体注释的结合位点进行成对相似性测量,可以检测到与各种靶标的交叉反应。