Suppr超能文献

赋予自我更新和分化能力:线粒体在干细胞中的作用。

Empowering self-renewal and differentiation: the role of mitochondria in stem cells.

机构信息

Section of Cardiology, Department of Medicine, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Ave. MC 6080, Chicago, IL 60637, USA.

出版信息

J Mol Med (Berl). 2010 Oct;88(10):981-6. doi: 10.1007/s00109-010-0678-2. Epub 2010 Sep 1.

Abstract

Stem cells are characterized by their multi-lineage differentiation potential (pluripotency) and their ability for self-renewal, which permits them to proliferate while avoiding lineage commitment and senescence. Recent studies demonstrate that undifferentiated, pluripotent stem cells display lower levels of mitochondrial mass and oxidative phosphorylation, and instead preferentially use non-oxidative glycolysis as a major source of energy. Hypoxia is a potent suppressor of mitochondrial oxidation and appears to promote "stemness" in adult and embryonic stem cells. This has lead to an emerging paradigm, that mitochondrial oxidative metabolism is not just an indicator of the undifferentiated state of stem cells, but may also regulate the pluripotency and self-renewal of stem cells. The identification of specific mitochondrial pathways that regulate stem cell fate may therefore enable metabolic programming and reprogramming of stem cells.

摘要

干细胞的特征是其多能性分化潜能(多能性)和自我更新能力,这使其能够增殖,同时避免谱系承诺和衰老。最近的研究表明,未分化的多能干细胞显示出较低水平的线粒体质量和氧化磷酸化,而是优先使用非氧化糖酵解作为主要的能量来源。缺氧是线粒体氧化的有力抑制剂,似乎促进了成体和胚胎干细胞的“干性”。这导致了一个新兴的范例,即线粒体氧化代谢不仅是干细胞未分化状态的指标,而且可能调节干细胞的多能性和自我更新。因此,鉴定调节干细胞命运的特定线粒体途径可能使代谢编程和干细胞的重编程成为可能。

相似文献

3
Connecting Mitochondria, Metabolism, and Stem Cell Fate.连接线粒体、新陈代谢与干细胞命运
Stem Cells Dev. 2015 Sep 1;24(17):1957-71. doi: 10.1089/scd.2015.0117. Epub 2015 Jul 2.
10
Mechanisms controlling embryonic stem cell self-renewal and differentiation.控制胚胎干细胞自我更新和分化的机制。
Crit Rev Eukaryot Gene Expr. 2006;16(3):211-31. doi: 10.1615/critreveukargeneexpr.v16.i3.20.

引用本文的文献

5
Mitochondrial dysfunction and therapeutic perspectives in osteoporosis.骨质疏松症中线粒体功能障碍及治疗策略。
Front Endocrinol (Lausanne). 2024 Feb 2;15:1325317. doi: 10.3389/fendo.2024.1325317. eCollection 2024.
10
Mitochondrial regulation during male germ cell development.精子发生过程中线粒体的调控。
Cell Mol Life Sci. 2022 Jan 24;79(2):91. doi: 10.1007/s00018-022-04134-3.

本文引用的文献

1
Targeting mitochondria for cancer therapy.针对线粒体的癌症治疗方法。
Nat Rev Drug Discov. 2010 Jun;9(6):447-64. doi: 10.1038/nrd3137. Epub 2010 May 14.
5
Feeling the elephant of cardiovascular cell therapy.感受心血管细胞治疗这头“大象”。
Circulation. 2010 Jan 19;121(2):197-9. doi: 10.1161/CIRCULATIONAHA.109.912105. Epub 2010 Jan 4.
6
MYC-induced cancer cell energy metabolism and therapeutic opportunities.MYC诱导的癌细胞能量代谢及治疗机会。
Clin Cancer Res. 2009 Nov 1;15(21):6479-83. doi: 10.1158/1078-0432.CCR-09-0889. Epub 2009 Oct 27.
7
Hypoxia enhances the generation of induced pluripotent stem cells.缺氧可增强诱导多能干细胞的生成。
Cell Stem Cell. 2009 Sep 4;5(3):237-41. doi: 10.1016/j.stem.2009.08.001. Epub 2009 Aug 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验