Unit of Functional Bionanomaterials, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Biotechnol Lett. 2010 Dec;32(12):1837-45. doi: 10.1007/s10529-010-0383-9. Epub 2010 Sep 1.
Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.
大肠杆菌菌株 MC4100(亲本)和从该菌株衍生的突变株(IC007)被评估了其通过发酵生产 H(2) 和有机酸 (OAs) 的能力。生长后,通过 Pd(II) 的生物还原将每种菌株涂覆 Pd(0)。干燥、烧结的 Pd 生物材料('Bio-Pd')被测试为质子交换膜(PEM)燃料电池中的阳极,以评估其从 H(2) 产生电能的能力。两种菌株都产生氢气和 OAs,但与 Bio-Pd(MC4100) 相比,菌株 IC007 的'钯化'细胞(Bio-Pd(IC007))产生的功率高约三倍(分别为 56 和 18 mW)。相比之下,用于比较的商用 Pd(0) 粉末和由脱硫弧菌制成的 Bio-Pd 的功率输出约为 100 mW。讨论了这些发现对集成能源产生过程的影响。