Tuo Ya, Liu Guangfei, Dong Bin, Zhou Jiti, Wang Aijie, Wang Jing, Jin Ruofei, Lv Hong, Dou Zeou, Huang Wenyu
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
Sci Rep. 2015 Aug 27;5:13515. doi: 10.1038/srep13515.
Magnetically recoverable noble metal nanoparticles are promising catalysts for chemical reactions. However, the chemical synthesis of these nanocatalysts generally causes environmental concern due to usage of toxic chemicals under extreme conditions. Here, Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites are biosynthesized under ambient and physiological conditions by Shewanella oneidensis MR-1. Microbial cells firstly transform akaganeite into magnetite, which then serves as support for the further synthesis of Pd, Au and PdAu nanoparticles from respective precursor salts. Surface-bound cellular components and exopolysaccharides not only function as shape-directing agent to convert some Fe3O4 nanoparticles to nanorods, but also participate in the formation of PdAu alloy nanoparticles on magnetite. All these three kinds of magnetic nanocomposites can catalyze the reduction of 4-nitrophenol and some other nitroaromatic compounds by NaBH4. PdAu/Fe3O4 demonstrates higher catalytic activity than Pd/Fe3O4 and Au/Fe3O4. Moreover, the magnetic nanocomposites can be easily recovered through magnetic decantation after catalysis reaction. PdAu/Fe3O4 can be reused in at least eight successive cycles of 4-nitrophenol reduction. The biosynthesis approach presented here does not require harmful agents or rigorous conditions and thus provides facile and environmentally benign choice for the preparation of magnetic noble metal nanocatalysts.
磁性可回收贵金属纳米颗粒是很有前景的化学反应催化剂。然而,由于在极端条件下使用有毒化学品,这些纳米催化剂的化学合成通常会引起环境问题。在此,嗜铁素还原地杆菌MR-1在环境和生理条件下生物合成了Pd/Fe3O4、Au/Fe3O4和PdAu/Fe3O4纳米复合材料。微生物细胞首先将针铁矿转化为磁铁矿,然后磁铁矿作为载体,用于从各自的前体盐进一步合成Pd、Au和PdAu纳米颗粒。表面结合的细胞成分和胞外多糖不仅作为形状导向剂将一些Fe3O4纳米颗粒转化为纳米棒,还参与了磁铁矿上PdAu合金纳米颗粒的形成。这三种磁性纳米复合材料都能催化NaBH4还原4-硝基苯酚和其他一些硝基芳香化合物。PdAu/Fe3O4表现出比Pd/Fe3O4和Au/Fe3O4更高的催化活性。此外,催化反应后,磁性纳米复合材料可通过磁倾析轻松回收。PdAu/Fe3O4可在至少八个连续的4-硝基苯酚还原循环中重复使用。这里提出的生物合成方法不需要有害试剂或严格条件,因此为制备磁性贵金属纳米催化剂提供了简便且环境友好的选择。