Leuker G, Hingst V
Abt. Hygiene und Medizinische Mikrobiologie, Universität Heidelberg.
Zentralbl Hyg Umweltmed. 1990 Oct;190(4):365-79.
The efficiency of UV-irradiation for water disinfection was tested using an UV-plant with constant flow between 0.7 and 11.5 m3/h. Within the range of water transmission (254 nm) between 40% and 98% (1 cm), which naturally was found in tap water, water from the Neckar river and biologically treated sewage water in an amount of 96%, 78% and ca. 60%, simulation was performed by artificial addition of fluorescein to demineralized water. Data obtained show similar results for the reduction of E. faecium and C. albicans, which were used as test strains. The investigation show no major discrepancies in the range of transmission from 80-96%, which is relevant for tap water disinfection. Water transmission at 254 nm was confirmed as important factor for UV-irradiation. Also found suitable was fluorescein for simulation of the natural water transmission without affecting the test strains. Thus UV-sensitivity of test strains could be detected by combination of flow rate and simulated water transmission using fluorescein. P. aeruginosa and E. coli were found to be more UV-sensitive than S. enteritidis and S. marcescens. UV-resistance increased on the scale from E. faecium, S. aureus, M. luteus up to C. albicans. The efficiency of an UV-plant can be experimentally defined by a specific combination of flow rate (up to a certain amount) and water transmission. Thus the question can be answered whether and UV-plant is able to fulfill the specific requirements in use. These results, regarding the artificial variation of transmission values, are to be considered important for the specification of an additional measure of safety for minimal irradiation exposure times.