Suppr超能文献

定量高通量筛选数据的质量控制

Quality Control of Quantitative High Throughput Screening Data.

作者信息

Shockley Keith R, Gupta Shuva, Harris Shawn F, Lahiri Soumendra N, Peddada Shyamal D

机构信息

Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States.

Statistics Department, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Front Genet. 2019 May 9;10:387. doi: 10.3389/fgene.2019.00387. eCollection 2019.

Abstract

Quantitative high throughput screening (qHTS) experiments can generate 1000s of concentration-response profiles to screen compounds for potentially adverse effects. However, potency estimates for a single compound can vary considerably in study designs incorporating multiple concentration-response profiles for each compound. We introduce an automated quality control procedure based on analysis of variance (ANOVA) to identify and filter out compounds with multiple cluster response patterns and improve potency estimation in qHTS assays. Our approach, called luster nalysis by ubgroups using (), clusters compound-specific response patterns into statistically supported subgroups. Applying to 43 publicly available qHTS data sets, we found that only about 20% of compounds with response values outside of the noise band have single cluster responses. The error rates for incorrectly separating true clusters and incorrectly clumping disparate clusters were both less than 5% in extensive simulation studies. Simulation studies also showed that the bias and variance of concentration at half-maximal response ( ) estimates were usually within 10-fold when using a weighted average approach for potency estimation. In short, effectively sorts out compounds with "inconsistent" response patterns and produces trustworthy values.

摘要

定量高通量筛选(qHTS)实验可以生成数千个浓度-反应曲线,以筛选化合物的潜在不良反应。然而,在为每种化合物纳入多个浓度-反应曲线的研究设计中,单一化合物的效价估计可能会有很大差异。我们引入了一种基于方差分析(ANOVA)的自动化质量控制程序,以识别和筛选出具有多种聚类反应模式的化合物,并改善qHTS分析中的效价估计。我们的方法,称为使用()按亚组进行聚类分析,将化合物特异性反应模式聚类为具有统计学支持的亚组。将该方法应用于43个公开可用的qHTS数据集,我们发现,只有约20%反应值超出噪声带的化合物具有单一聚类反应。在广泛的模拟研究中,错误分离真实聚类和错误合并不同聚类的错误率均小于5%。模拟研究还表明,当使用加权平均方法进行效价估计时,半数最大反应浓度()估计值的偏差和方差通常在10倍以内。简而言之,该方法有效地筛选出具有“不一致”反应模式的化合物,并产生可靠的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec1/6520559/81d988c69ebd/fgene-10-00387-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验