Suppr超能文献

用于模式分类的稳健肌电传感接口设计。

Design of a robust EMG sensing interface for pattern classification.

机构信息

Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA.

出版信息

J Neural Eng. 2010 Oct;7(5):056005. doi: 10.1088/1741-2560/7/5/056005. Epub 2010 Sep 1.

Abstract

Electromyographic (EMG) pattern classification has been widely investigated for neural control of external devices in order to assist with movements of patients with motor deficits. Classification performance deteriorates due to inevitable disturbances to the sensor interface, which significantly challenges the clinical value of this technique. This study aimed to design a sensor fault detection (SFD) module in the sensor interface to provide reliable EMG pattern classification. This module monitored the recorded signals from individual EMG electrodes and performed a self-recovery strategy to recover the classification performance when one or more sensors were disturbed. To evaluate this design, we applied synthetic disturbances to EMG signals collected from leg muscles of able-bodied subjects and a subject with a transfemoral amputation and compared the accuracies for classifying transitions between different locomotion modes with and without the SFD module. The results showed that the SFD module maintained classification performance when one signal was distorted and recovered about 20% of classification accuracy when four signals were distorted simultaneously. The method was simple to implement. Additionally, these outcomes were observed for all subjects, including the leg amputee, which implies the promise of the designed sensor interface for providing a reliable neural-machine interface for artificial legs.

摘要

肌电图 (EMG) 模式分类已广泛应用于外部设备的神经控制,以辅助运动功能障碍患者的运动。由于传感器接口不可避免的干扰,分类性能会下降,这极大地挑战了该技术的临床价值。本研究旨在设计传感器故障检测 (SFD) 模块,以在传感器接口中提供可靠的肌电模式分类。该模块监测来自单个肌电电极的记录信号,并在一个或多个传感器受到干扰时执行自恢复策略,以恢复分类性能。为了评估该设计,我们将人为干扰应用于从健全受试者和一位接受股骨截肢的受试者的腿部肌肉中采集的肌电信号,并比较了有无 SFD 模块时,分类不同运动模式之间转换的准确性。结果表明,当一个信号失真时,SFD 模块能够保持分类性能,当四个信号同时失真时,分类准确性恢复了约 20%。该方法易于实施。此外,包括腿部截肢者在内的所有受试者都观察到了这些结果,这意味着设计的传感器接口有望为人工腿提供可靠的神经机器接口。

相似文献

1
Design of a robust EMG sensing interface for pattern classification.
J Neural Eng. 2010 Oct;7(5):056005. doi: 10.1088/1741-2560/7/5/056005. Epub 2010 Sep 1.
2
A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
J Neuroeng Rehabil. 2015 Feb 19;12:18. doi: 10.1186/s12984-015-0011-y.
3
Real-time implementation of a self-recovery EMG pattern recognition interface for artificial arms.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5926-9. doi: 10.1109/EMBC.2013.6610901.
4
Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
J Neural Eng. 2014 Oct;11(5):056021. doi: 10.1088/1741-2560/11/5/056021. Epub 2014 Sep 22.
5
A strategy for identifying locomotion modes using surface electromyography.
IEEE Trans Biomed Eng. 2009 Jan;56(1):65-73. doi: 10.1109/TBME.2008.2003293.
6
Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial.
JAMA. 2015 Jun 9;313(22):2244-52. doi: 10.1001/jama.2015.4527.
7
Locomotion mode classification using a wearable capacitive sensing system.
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):744-55. doi: 10.1109/TNSRE.2013.2262952. Epub 2013 May 17.
8
Study of stability of time-domain features for electromyographic pattern recognition.
J Neuroeng Rehabil. 2010 May 21;7:21. doi: 10.1186/1743-0003-7-21.
9
An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface.
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):37-45. doi: 10.1109/TNSRE.2007.910282.
10
Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
IEEE J Biomed Health Inform. 2013 May;17(3):608-18. doi: 10.1109/jbhi.2013.2249590.

引用本文的文献

1
SonoMyoNet: A Convolutional Neural Network for Predicting Isometric Force from Highly Sparse Ultrasound Images.
IEEE Trans Hum Mach Syst. 2024 Jun;54(3):317-324. doi: 10.1109/thms.2024.3389690. Epub 2024 May 13.
3
Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review.
Cyborg Bionic Syst. 2021 Jun 4;2021:9863761. doi: 10.34133/2021/9863761. eCollection 2021.
7
Improving the functionality, robustness, and adaptability of myoelectric control for dexterous motion restoration.
Exp Brain Res. 2019 Feb;237(2):291-311. doi: 10.1007/s00221-018-5441-x. Epub 2018 Nov 30.
8
Causes of Performance Degradation in Non-invasive Electromyographic Pattern Recognition in Upper Limb Prostheses.
Front Neurorobot. 2018 Sep 21;12:58. doi: 10.3389/fnbot.2018.00058. eCollection 2018.
9
An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition.
Sensors (Basel). 2017 Sep 4;17(9):2020. doi: 10.3390/s17092020.
10
An artificial EMG generation model based on signal-dependent noise and related application to motion classification.
PLoS One. 2017 Jun 22;12(6):e0180112. doi: 10.1371/journal.pone.0180112. eCollection 2017.

本文引用的文献

1
Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):49-57. doi: 10.1109/TNSRE.2009.2039590. Epub 2010 Jan 12.
2
Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):185-92. doi: 10.1109/TNSRE.2009.2039619. Epub 2010 Jan 12.
3
Multiclass real-time intent recognition of a powered lower limb prosthesis.
IEEE Trans Biomed Eng. 2010 Mar;57(3):542-51. doi: 10.1109/TBME.2009.2034734. Epub 2009 Oct 20.
5
Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):270-8. doi: 10.1109/TNSRE.2009.2023282. Epub 2009 Jun 2.
6
Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm.
Biomed Eng Online. 2009 Feb 25;8:5. doi: 10.1186/1475-925X-8-5.
7
A strategy for identifying locomotion modes using surface electromyography.
IEEE Trans Biomed Eng. 2009 Jan;56(1):65-73. doi: 10.1109/TBME.2008.2003293.
8
The effect of electrode displacements on pattern recognition based myoelectric control.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2203-6. doi: 10.1109/IEMBS.2006.260681.
9
Decoding a new neural machine interface for control of artificial limbs.
J Neurophysiol. 2007 Nov;98(5):2974-82. doi: 10.1152/jn.00178.2007. Epub 2007 Aug 29.
10
A comparison of surface and intramuscular myoelectric signal classification.
IEEE Trans Biomed Eng. 2007 May;54(5):847-53. doi: 10.1109/TBME.2006.889192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验