Suppr超能文献

相似文献

1
Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):270-8. doi: 10.1109/TNSRE.2009.2023282. Epub 2009 Jun 2.
2
EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.
Med Eng Phys. 2014 Jul;36(7):975-80. doi: 10.1016/j.medengphy.2014.04.003. Epub 2014 May 17.
3
Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
IEEE Trans Neural Syst Rehabil Eng. 2016 Sep;24(9):961-970. doi: 10.1109/TNSRE.2015.2492619. Epub 2015 Oct 26.
4
Surface myoelectric signal classification for prostheses control.
J Med Eng Technol. 2005 Sep-Oct;29(5):203-7. doi: 10.1080/03091900412331289906.
5
A supervised feature projection for real-time multifunction myoelectric hand control.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2417-20. doi: 10.1109/IEMBS.2006.259659.
6
Approximated mutual information training for speech recognition using myoelectric signals.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:767-70. doi: 10.1109/IEMBS.2006.259992.
7
Multi-receiver precision decomposition of intramuscular EMG signals.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1252-5. doi: 10.1109/IEMBS.2006.260320.
8
Correlation analysis of electromyogram signals for multiuser myoelectric interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):745-55. doi: 10.1109/TNSRE.2014.2304470. Epub 2014 Feb 11.
9
The evaluation of the discriminant ability of multiclass SVM in a study of hand motion recognition by using SEMG.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5246-9. doi: 10.1109/EMBC.2012.6347177.
10
Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.
IEEE Trans Biomed Eng. 2013 Aug;60(8):2205-13. doi: 10.1109/TBME.2013.2250502. Epub 2013 Mar 7.

引用本文的文献

1
Meta-Learning for Fast Adaptation in Intent Inferral on a Robotic Hand Orthosis for Stroke.
Rep U S. 2024 Oct;2024:4693-4700. doi: 10.1109/iros58592.2024.10801596. Epub 2024 Dec 25.
3
Toward Cyborg: Exploring Long-Term Clinical Outcomes of a Multi-Degree-of-Freedom Myoelectric Prosthetic Hand.
Cyborg Bionic Syst. 2025 Mar 18;6:0195. doi: 10.34133/cbsystems.0195. eCollection 2025.
5
Context-informed incremental learning improves both the performance and resilience of myoelectric control.
J Neuroeng Rehabil. 2024 May 3;21(1):70. doi: 10.1186/s12984-024-01355-4.
6
Improving Long Term Myoelectric Decoding, Using an Adaptive Classifier with Label Correction.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2012 Jun;2012:532-537. doi: 10.1109/biorob.2012.6290901. Epub 2012 Aug 30.
8
A Review of Current State-of-the-Art Control Methods for Lower-Limb Powered Prostheses.
Annu Rev Control. 2023;55:142-164. doi: 10.1016/j.arcontrol.2023.03.003. Epub 2023 Apr 3.
9
Adaptive Semi-Supervised Intent Inferral to Control a Powered Hand Orthosis for Stroke.
IEEE Int Conf Robot Autom. 2022 May;2022:8097-8103. doi: 10.1109/icra46639.2022.9811932. Epub 2022 Jul 12.
10
Recalibration of myoelectric control with active learning.
Front Neurorobot. 2022 Dec 15;16:1061201. doi: 10.3389/fnbot.2022.1061201. eCollection 2022.

本文引用的文献

2
An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface.
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):37-45. doi: 10.1109/TNSRE.2007.910282.
3
Myoelectric signal analysis using neural networks.
IEEE Eng Med Biol Mag. 1990;9(1):61-4. doi: 10.1109/51.62909.
4
Decoding a new neural machine interface for control of artificial limbs.
J Neurophysiol. 2007 Nov;98(5):2974-82. doi: 10.1152/jn.00178.2007. Epub 2007 Aug 29.
5
A comparison of surface and intramuscular myoelectric signal classification.
IEEE Trans Biomed Eng. 2007 May;54(5):847-53. doi: 10.1109/TBME.2006.889192.
6
Computer science. Where are the exemplars?
Science. 2007 Feb 16;315(5814):949-51. doi: 10.1126/science.1139678.
9
Fatigue estimation with a multivariable myoelectric mapping function.
IEEE Trans Biomed Eng. 2006 Apr;53(4):694-700. doi: 10.1109/TBME.2006.870220.
10
A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses.
IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11. doi: 10.1109/TBME.2005.856295.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验