Suppr超能文献

硫酸盐还原菌种群在黑带病发病过程中的变化。

Changes in sulfate-reducing bacterial populations during the onset of black band disease.

机构信息

Centre of Marine Microbiology and Genetics, Australian Institute of Marine Science, Townsville, Queensland, Australia.

出版信息

ISME J. 2011 Mar;5(3):559-64. doi: 10.1038/ismej.2010.143. Epub 2010 Sep 2.

Abstract

Factors that facilitate the onset of black band disease (BBD) of corals remain elusive, though anoxic conditions under the complex microbial mat and production of sulfide are implicated in necrosis of underlying coral tissues. This study investigated the diversity and quantitative shifts of sulfate-reducing bacterial (SRB) populations during the onset of BBD using real-time PCR (RT-PCR) and cloning approaches targeting the dissimilatory (bi)sulfite reductase (dsrA) gene. A quantitative-PCR (qPCR) assay targeting the 16S rRNA gene also provided an estimate of total bacteria, and allowed the relative percentage of SRB within the lesions to be determined. Three Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CPs) (comprising microbial communities unlike those of BBD lesions), were tagged and followed through time as CP developed into BBD. The dsrA-targeted qPCR detected few copies of the gene in the CP samples (<65 per ng DNA), though copy numbers increased in BBD lesions (>2500 per ng DNA). SRB in CP samples were less than 1% of the bacterial population, though represented up to 7.5% of the BBD population. Clone libraries also demonstrated a shift in the dominant dsrA sequences as lesions shifted from CP into BBD. Results from this study confirm that SRB increase during the onset of BBD, likely increasing sulfide concentrations at the base of the microbial mat and facilitating the pathogenesis of BBD.

摘要

尽管缺氧条件下复杂微生物席下产生的硫化物与珊瑚组织坏死有关,但促进珊瑚黑带病(BBD)发生的因素仍难以捉摸。本研究使用实时 PCR(RT-PCR)和针对异化(双)亚硫酸盐还原酶(dsrA)基因的克隆方法,调查了 BBD 发生过程中硫酸盐还原菌(SRB)种群的多样性和数量变化。针对 16S rRNA 基因的定量-PCR(qPCR)检测法还提供了总细菌的估计值,并允许确定病变内 SRB 的相对百分比。三个 Montipora sp.珊瑚群落,先前被标记为蓝藻斑块(CPs)(包含与 BBD 病变不同的微生物群落)的病变,随着 CP 发展为 BBD,进行了标记并随时间进行了跟踪。dsrA 靶向 qPCR 在 CP 样本中检测到该基因的拷贝数很少(<65 个拷贝/ng DNA),尽管在 BBD 病变中拷贝数增加(>2500 个拷贝/ng DNA)。CP 样本中的 SRB 不到细菌总数的 1%,但代表了高达 7.5%的 BBD 种群。克隆文库还表明,随着病变从 CP 转变为 BBD,dsrA 序列的主导序列也发生了转变。本研究的结果证实,SRB 在 BBD 发生过程中增加,可能会增加微生物席底部的硫化物浓度,并促进 BBD 的发病机制。

相似文献

1
Changes in sulfate-reducing bacterial populations during the onset of black band disease.
ISME J. 2011 Mar;5(3):559-64. doi: 10.1038/ismej.2010.143. Epub 2010 Sep 2.
3
Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions.
Environ Microbiol Rep. 2013 Aug;5(4):518-24. doi: 10.1111/1758-2229.12055. Epub 2013 Apr 22.
6
Characterization of black band disease in Red Sea stony corals.
Environ Microbiol. 2007 Aug;9(8):1995-2006. doi: 10.1111/j.1462-2920.2007.01315.x.
7
Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.
FEMS Microbiol Ecol. 2010 Jul 1;73(1):43-54. doi: 10.1111/j.1574-6941.2010.00874.x. Epub 2010 Mar 30.
8
Molecular detection and ecological significance of the cyanobacterial genera Geitlerinema and Leptolyngbya in black band disease of corals.
Appl Environ Microbiol. 2007 Aug;73(16):5173-82. doi: 10.1128/AEM.00900-07. Epub 2007 Jun 29.
9
A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals.
FEMS Microbiol Ecol. 2011 Feb;75(2):231-41. doi: 10.1111/j.1574-6941.2010.00991.x. Epub 2010 Nov 26.
10
Vibrio sp. as a potentially important member of the Black Band Disease (BBD) consortium in Favia sp. corals.
FEMS Microbiol Ecol. 2009 Dec;70(3):515-24. doi: 10.1111/j.1574-6941.2009.00770.x. Epub 2009 Aug 24.

引用本文的文献

2
Microbial mat compositions and localization patterns explain the virulence of black band disease in corals.
NPJ Biofilms Microbiomes. 2023 Apr 4;9(1):15. doi: 10.1038/s41522-023-00381-9.
4
Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate.
Front Microbiol. 2019 Apr 2;10:654. doi: 10.3389/fmicb.2019.00654. eCollection 2019.
7
Climate-driven shifts in sediment chemistry enhance methane production in northern lakes.
Nat Commun. 2018 May 4;9(1):1801. doi: 10.1038/s41467-018-04236-2.
8
Comparative Metagenomics of the Polymicrobial Black Band Disease of Corals.
Front Microbiol. 2017 Apr 18;8:618. doi: 10.3389/fmicb.2017.00618. eCollection 2017.
10
In situ visualization of bacterial populations in coral tissues: pitfalls and solutions.
PeerJ. 2016 Sep 20;4:e2424. doi: 10.7717/peerj.2424. eCollection 2016.

本文引用的文献

2
Sulfide, microcystin, and the etiology of black band disease.
Dis Aquat Organ. 2009 Nov 16;87(1-2):79-90. doi: 10.3354/dao02083.
3
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. doi: 10.1128/AEM.01541-09. Epub 2009 Oct 2.
5
Ecological physiology of the black band disease cyanobacterium Phormidium corallyticum.
FEMS Microbiol Ecol. 2003 Apr 1;43(3):287-98. doi: 10.1016/S0168-6496(03)00025-4.
7
Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral.
FEMS Microbiol Ecol. 2009 Feb;67(2):242-51. doi: 10.1111/j.1574-6941.2008.00619.x. Epub 2008 Nov 15.
8
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Brief Bioinform. 2008 Jul;9(4):299-306. doi: 10.1093/bib/bbn017. Epub 2008 Apr 16.
9
Characterization of black band disease in Red Sea stony corals.
Environ Microbiol. 2007 Aug;9(8):1995-2006. doi: 10.1111/j.1462-2920.2007.01315.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验