Suppr超能文献

个体虎鲸的自动识别。

Automatic identification of individual killer whales.

机构信息

Department of Physics, Wellesley College, Wellesley, Massachusetts 02481, USA.

出版信息

J Acoust Soc Am. 2010 Sep;128(3):EL93-8. doi: 10.1121/1.3462232.

Abstract

Following the successful use of HMM and GMM models for classification of a set of 75 calls of northern resident killer whales into call types [Brown, J. C., and Smaragdis, P., J. Acoust. Soc. Am. 125, 221-224 (2009)], the use of these same methods has been explored for the identification of vocalizations from the same call type N2 of four individual killer whales. With an average of 20 vocalizations from each of the individuals the pairwise comparisons have an extremely high success rate of 80 to 100% and the identifications within the entire group yield around 78%.

摘要

继使用 HMM 和 GMM 模型成功地对一组 75 个北太平洋居留鲸叫声分类为叫声类型[Brown, J. C., and Smaragdis, P., J. Acoust. Soc. Am. 125, 221-224 (2009)]后,研究人员还探索了使用相同方法识别来自同一种叫声类型 N2 的四只个体虎鲸的叫声。对于每个个体,平均有 20 个叫声,这些叫声之间的两两比较成功率极高,达到 80%至 100%,而整个群体的识别率约为 78%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验