Suppr超能文献

深度学习技术在抹香鲸生物声学检测与分类中的应用。

Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics.

机构信息

Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, USA.

Department of Computing, Imperial College, London, MA, UK.

出版信息

Sci Rep. 2019 Aug 29;9(1):12588. doi: 10.1038/s41598-019-48909-4.

Abstract

We implemented Machine Learning (ML) techniques to advance the study of sperm whale (Physeter macrocephalus) bioacoustics. This entailed employing Convolutional Neural Networks (CNNs) to construct an echolocation click detector designed to classify spectrograms generated from sperm whale acoustic data according to the presence or absence of a click. The click detector achieved 99.5% accuracy in classifying 650 spectrograms. The successful application of CNNs to clicks reveals the potential of future studies to train CNN-based architectures to extract finer-scale details from cetacean spectrograms. Long short-term memory and gated recurrent unit recurrent neural networks were trained to perform classification tasks, including (1) "coda type classification" where we obtained 97.5% accuracy in categorizing 23 coda types from a Dominica dataset containing 8,719 codas and 93.6% accuracy in categorizing 43 coda types from an Eastern Tropical Pacific (ETP) dataset with 16,995 codas; (2) "vocal clan classification" where we obtained 95.3% accuracy for two clan classes from Dominica and 93.1% for four ETP clan types; and (3) "individual whale identification" where we obtained 99.4% accuracy using two Dominica sperm whales. These results demonstrate the feasibility of applying ML to sperm whale bioacoustics and establish the validity of constructing neural networks to learn meaningful representations of whale vocalizations.

摘要

我们采用机器学习 (ML) 技术来推进抹香鲸 (Physeter macrocephalus) 生物声学的研究。这包括使用卷积神经网络 (CNNs) 构建一个回声定位点击探测器,旨在根据声纳数据中是否存在点击来对声谱图进行分类。点击探测器在对 650 个声谱图进行分类时达到了 99.5%的准确率。CNN 在点击分类中的成功应用表明,未来的研究有可能训练基于 CNN 的架构,从鲸目动物的声谱图中提取更精细的细节。长短期记忆和门控循环单元递归神经网络被训练来执行分类任务,包括 (1) “尾音类型分类”,我们在包含 8719 个尾音的多米尼加数据集和包含 16995 个尾音的东热带太平洋 (ETP) 数据集上,分别以 97.5%和 93.6%的准确率对 23 种和 43 种尾音类型进行了分类;(2) “发声族群分类”,在多米尼加,两种族群类型的准确率为 95.3%,而在 ETP,四种族群类型的准确率为 93.1%;以及 (3) “个体鲸鱼识别”,使用来自多米尼加的两只抹香鲸,我们获得了 99.4%的准确率。这些结果证明了将 ML 应用于抹香鲸生物声学的可行性,并建立了构建神经网络以学习鲸鱼发声有意义表示的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42df/6715799/29529e325a1c/41598_2019_48909_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验