Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab, Martensstr. 3, 91058, Erlangen, Germany.
Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
Sci Rep. 2019 Jul 29;9(1):10997. doi: 10.1038/s41598-019-47335-w.
Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis - particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository - the Orchive - comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species.
大型野生动物生物声学档案是识别重现的交流模式的重要来源,这些模式可以与重现的行为模式相关联,从而推进对非人类动物种内交流的现有理解。一个主要的挑战仍然是,大多数大规模生物声学档案只包含一小部分动物的叫声和大量的环境噪声,这使得手动检索足够数量的叫声进行进一步分析变得极其困难 - 对于具有先进社会系统和复杂叫声的物种来说尤为重要。在这项研究中,深度神经网络在 11509 个虎鲸(Orcinus orca)信号和 34848 个噪声段上进行了训练。由此产生的工具包 ORCA-SPOT 在一个大规模的生物声学存储库 - Orchive 上进行了测试,该存储库包含大约 19000 小时的虎鲸水下录音。对整个 Orchive 录音(约 2.2 年)的自动分割大约需要 8 天。它实现了基于时间的精度或阳性预测值(PPV)为 93.2%,曲线下面积(AUC)为 0.9523。这种方法可以实现对大型生物声学数据库的自动注释程序,以提取虎鲸声音,这对于随后识别重要的交流模式至关重要。该代码将于 2019 年 10 月公开发布,以支持深度学习在生物声学研究中的应用。ORCA-SPOT 可以适应其他动物物种。