Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, Mexico.
Neurochem Int. 2010 Dec;57(7):795-803. doi: 10.1016/j.neuint.2010.08.017. Epub 2010 Sep 9.
Glutamate, the major excitatory transmitter in the vertebrate brain, is involved in neuronal development and synaptic plasticity. Glutamatergic stimulation leads to differential gene expression patterns in neuronal and glial cells. A glutamate-dependent transcriptional control has been established for several genes. However, much less is known about the molecular events that modify the translational machinery upon exposure to this neurotransmitter. In a glial model of cerebellar cultured Bergmann cells, glutamate induces a biphasic effect on [(35)S]-methionine incorporation into proteins that suggests that the elongation phase of protein biosynthesis is the target for regulation. Indeed, after a 15 min exposure to glutamate a transient increase in elongation factor 2 phosphorylation has been reported, an effect mediated through the activation of the elongation factor 2 kinase. In this contribution, we sought to characterize the phosphorylation status of the eukaryotic elongation factor 1A (eEF1A) and the ribosomal transit time under glutamate exposure. A dose-dependent increase in eEF1A phosphorylation was found after a 60 min glutamate treatment; this phenomenon is Ca(2+)/CaM dependent, blocked with Src and phosphatidyl-inositol 3-kinase inhibitors and with rapamicyn. Concomitantly, the ribosomal transit time was increased with a 15 min glutamate exposure. After 60 more minutes, the average time used by the ribosomes to complete a polypeptide chain had almost returned to its initial level. These results strongly suggest that glutamate exerts an exquisite time-dependent translational control in glial cells, a process that might be critical for glia-neuron interactions.
谷氨酸是脊椎动物大脑中的主要兴奋性递质,参与神经元发育和突触可塑性。谷氨酸能刺激导致神经元和神经胶质细胞中差异基因表达模式。已经建立了几种基因的谷氨酸依赖的转录控制。然而,对于暴露于这种神经递质后如何修饰翻译机制的分子事件知之甚少。在小脑培养的 Bergmann 胶质细胞的谷氨酸能刺激模型中,谷氨酸对 [(35)S]-甲硫氨酸掺入蛋白产生双相效应,表明蛋白生物合成的延伸阶段是调节的靶标。事实上,在暴露于谷氨酸 15 分钟后,已经报道了延伸因子 2 磷酸化的短暂增加,这是通过延伸因子 2 激酶的激活介导的。在本研究中,我们试图描述在谷氨酸暴露下真核延伸因子 1A (eEF1A)和核糖体转运时间的磷酸化状态。发现经过 60 分钟的谷氨酸处理后,eEF1A 磷酸化呈剂量依赖性增加;这种现象是 Ca(2+)/CaM 依赖性的,被 Src 和磷脂酰肌醇 3-激酶抑制剂以及 rapamicyn 阻断。同时,核糖体转运时间在 15 分钟的谷氨酸暴露下增加。60 分钟后,核糖体完成多肽链的平均时间几乎恢复到初始水平。这些结果强烈表明谷氨酸在神经胶质细胞中发挥精细的时间依赖性翻译控制作用,这一过程可能对胶质细胞-神经元相互作用至关重要。