Suppr超能文献

改善正常对照者和 REM 睡眠行为障碍患者的弛缓指数计算。

Improved computation of the atonia index in normal controls and patients with REM sleep behavior disorder.

机构信息

Sleep Research Centre, Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via C. Ruggero 73, Troina, Italy.

出版信息

Sleep Med. 2010 Oct;11(9):947-9. doi: 10.1016/j.sleep.2010.06.003.

Abstract

OBJECTIVE

The aim of this study was to evaluate the effects of a simple method of noise reduction before the calculation of the REM sleep atonia index (AI) on a large number of recordings from different normal controls and patient groups.

SUBJECTS AND METHODS

Eighty-nine subjects were included: 25 young controls, 10 aged controls, 31 untreated patients with idiopathic REM sleep behavior disorder (iRBD), 8 treated patients with iRBD, 10 patients with multiple system atrophy (MSA) and 5 patients with obstructive sleep apnea syndrome (OSAS). The average amplitude of the rectified submentalis muscle EMG signal was then obtained for all 1-s mini epochs of REM sleep. The new correction method was implemented by subtracting from each mini epoch the minimum value found in a moving window including the 60 mini epochs surrounding it.

RESULTS

Two arbitrary thresholds were established at AI<0.8 and 0.8<AI<0.9; all young controls presented AI>0.9; this was not true for aged controls, 3 of whom presented 0.8<AI<0.9 but none had AI<0.8; on the contrary 74.4% of all iRBD showed AI<0.9, with 38.5% of the whole group having AI<0.8 and only 25.6% with AI>0.9. All MSA patients showed AI<0.8.

CONCLUSIONS

After the introduction of this new method for noise reduction, REM sleep AI index values lower than 0.8 were strongly indicative of altered (reduced) chin EMG atonia during REM sleep; values of AI between 0.8 and 0.9 indicated a less evident involvement of atonia, and values above 0.9 characterized the majority of normal recordings.

摘要

目的

本研究旨在评估一种在计算 REM 睡眠弛缓指数 (AI) 之前进行降噪的简单方法,对来自不同正常对照组和患者组的大量记录的影响。

方法

共纳入 89 例受试者:25 例年轻对照组、10 例老年对照组、31 例未经治疗的特发性 REM 睡眠行为障碍 (iRBD) 患者、8 例 iRBD 治疗患者、10 例多系统萎缩 (MSA) 患者和 5 例阻塞性睡眠呼吸暂停综合征 (OSAS) 患者。然后,获取所有 REM 睡眠 1 秒 mini 时程的颏下肌 EMG 信号的平均振幅。新的校正方法是通过从每个 mini 时程中减去包含其周围 60 个 mini 时程的移动窗口中找到的最小值来实现的。

结果

设定 AI<0.8 和 0.8<AI<0.9 两个任意阈值;所有年轻对照组的 AI>0.9;老年对照组并非如此,其中 3 例 AI 为 0.8<AI<0.9,但均无 AI<0.8;相反,所有 iRBD 的 74.4%呈现 AI<0.9,其中 38.5%的组 AI<0.8,仅有 25.6%的 AI>0.9。所有 MSA 患者的 AI<0.8。

结论

在引入这种新的降噪方法后,REM 睡眠 AI 指数值低于 0.8 强烈表明 REM 睡眠期间颏下肌 EMG 弛缓异常(降低);AI 值在 0.8 和 0.9 之间表明弛缓的参与程度较低,而高于 0.9 的值则代表了大多数正常记录。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验