Suppr超能文献

在压缩载荷下大鼠椎体的实验验证的细观力学模型。

An experimentally validated micromechanical model of a rat vertebra under compressive loading.

机构信息

Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, Sydney, Australia.

出版信息

J Anat. 2011 Jan;218(1):40-6. doi: 10.1111/j.1469-7580.2010.01289.x. Epub 2010 Aug 31.

Abstract

In recent years, finite element analysis (FEA) has been increasingly applied to examine and predict the mechanical behaviour of craniofacial and other bony structures. Traditional methods used to determine material properties and validate finite element models (FEMs) have met with variable success, and can be time-consuming. An implicit assumption underlying many FE studies is that relatively high localized stress/strain magnitudes identified in FEMs are likely to predict material failure. Here we present a new approach that may offer some advantages over previous approaches. Recently developed technology now allows us to both image and conduct mechanical tests on samples in situ using a materials testing stage (MTS) fitted inside the microCT scanner. Thus, micro-finite element models can be created and validated using both quantitative and qualitative means. In this study, a rat vertebra was tested under compressive loading until failure using an MTS. MicroCT imaging of the vertebra before mechanical testing was used to create a high resolution finite element model of the vertebra. Load-displacement data recorded during the test were used to calculate the effective Young's modulus of the bone (found to be 128 MPa). The microCT image of the compressed vertebra was used to assess the predictive qualities of the FE model. The model showed the highest stress concentrations in the areas that failed during the test. Clearly, our analyses do not directly address biomechanics of the craniofacial region; however, the methodology adopted here could easily be applied to examine the properties and behaviour of specific craniofacial structures, or whole craniofacial regions of small vertebrates. Experimentally validated micro-FE analyses are a powerful method in the study of materials with complex microstructures such as bone.

摘要

近年来,有限元分析(FEA)越来越多地被应用于研究和预测颅面和其他骨结构的力学行为。传统的用于确定材料性能和验证有限元模型(FEM)的方法取得了不同程度的成功,而且可能很耗时。许多 FE 研究的一个隐含假设是,在 FEM 中确定的相对较高的局部应力/应变幅度很可能预测材料失效。在这里,我们提出了一种可能优于以前方法的新方法。最近开发的技术现在允许我们使用配备在 microCT 扫描仪内部的材料测试台(MTS)对原位样本进行成像和机械测试。因此,可以使用定量和定性的方法创建和验证微有限元模型。在这项研究中,使用 MTS 对大鼠椎骨进行压缩加载直至失效测试。在进行机械测试之前对椎骨进行 microCT 成像,以创建椎骨的高分辨率有限元模型。测试过程中记录的载荷-位移数据用于计算骨的有效杨氏模量(发现为 128 MPa)。压缩椎骨的 microCT 图像用于评估 FE 模型的预测质量。模型显示在测试过程中失效的区域的应力集中最高。显然,我们的分析并没有直接解决颅面区域的生物力学问题;然而,这里采用的方法可以很容易地应用于检查特定颅面结构或小型脊椎动物的整个颅面区域的特性和行为。经过实验验证的微 FE 分析是研究具有复杂微观结构的材料(如骨骼)的一种强大方法。

相似文献

1
An experimentally validated micromechanical model of a rat vertebra under compressive loading.
J Anat. 2011 Jan;218(1):40-6. doi: 10.1111/j.1469-7580.2010.01289.x. Epub 2010 Aug 31.
2
Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
J Biomech. 2007;40(10):2174-83. doi: 10.1016/j.jbiomech.2006.10.032. Epub 2006 Dec 29.
4
Finite element modeling of the human thoracolumbar spine.
Spine (Phila Pa 1976). 2003 Mar 15;28(6):559-65. doi: 10.1097/01.BRS.0000049923.27694.47.
5
Finite element analysis of a micromechanical model of bone and a new 3D approach to validation.
J Biomech. 2012 Oct 11;45(15):2702-5. doi: 10.1016/j.jbiomech.2012.08.003. Epub 2012 Sep 3.
6
Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
J Mech Behav Biomed Mater. 2021 Mar;115:104302. doi: 10.1016/j.jmbbm.2020.104302. Epub 2021 Jan 5.
9
Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?
Eur J Radiol. 2014 Jan;83(1):e36-42. doi: 10.1016/j.ejrad.2013.10.024. Epub 2013 Nov 8.
10
Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models.
Biomech Model Mechanobiol. 2021 Jun;20(3):941-955. doi: 10.1007/s10237-021-01422-y. Epub 2021 Feb 1.

引用本文的文献

1
Micro-CT-Based Bone Microarchitecture Analysis of the Murine Skull.
Methods Mol Biol. 2022;2403:129-145. doi: 10.1007/978-1-0716-1847-9_10.
2
Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey.
Materials (Basel). 2019 Dec 24;13(1):106. doi: 10.3390/ma13010106.
3
Ketogenic diet compromises vertebral microstructure and biomechanical characteristics in mice.
J Bone Miner Metab. 2019 Nov;37(6):957-966. doi: 10.1007/s00774-019-01002-2. Epub 2019 Apr 9.
4
Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing.
PLoS One. 2015 May 8;10(5):e0124824. doi: 10.1371/journal.pone.0124824. eCollection 2015.
5
Oldest pathology in a tetrapod bone illuminates the origin of terrestrial vertebrates.
PLoS One. 2015 May 4;10(5):e0125723. doi: 10.1371/journal.pone.0125723. eCollection 2015.
6
Virtual reconstruction and prey size preference in the mid Cenozoic thylacinid, Nimbacinus dicksoni (Thylacinidae, Marsupialia).
PLoS One. 2014 Apr 9;9(4):e93088. doi: 10.1371/journal.pone.0093088. eCollection 2014.
8
Micro-biomechanics of the Kebara 2 hyoid and its implications for speech in Neanderthals.
PLoS One. 2013 Dec 18;8(12):e82261. doi: 10.1371/journal.pone.0082261. eCollection 2013.

本文引用的文献

1
Prediction of failure load using micro-finite element analysis models: Toward in vivo strength assessment.
Drug Discov Today Technol. 2006 Summer;3(2):221-9. doi: 10.1016/j.ddtec.2006.06.001.
2
A new approach for assigning bone material properties from CT images into finite element models.
J Biomech. 2010 Mar 22;43(5):1011-5. doi: 10.1016/j.jbiomech.2009.10.040. Epub 2009 Nov 25.
3
Assessment of bone quality using finite element analysis based upon micro-CT images.
Clin Orthop Surg. 2009 Mar;1(1):40-7. doi: 10.4055/cios.2009.1.1.40. Epub 2009 Feb 6.
4
Allometry and performance: the evolution of skull form and function in felids.
J Evol Biol. 2009 Nov;22(11):2278-87. doi: 10.1111/j.1420-9101.2009.01845.x. Epub 2009 Sep 29.
5
Application of micro-CT in small animal imaging.
Methods. 2010 Jan;50(1):2-13. doi: 10.1016/j.ymeth.2009.08.007. Epub 2009 Aug 23.
6
Enamel dictates whole tooth deformation: a finite element model study validated by a metrology method.
J Struct Biol. 2009 Dec;168(3):511-20. doi: 10.1016/j.jsb.2009.07.019. Epub 2009 Jul 25.
7
Hierarchical microimaging of bone structure and function.
Nat Rev Rheumatol. 2009 Jul;5(7):373-81. doi: 10.1038/nrrheum.2009.107.
8
A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation.
Comput Methods Programs Biomed. 2009 Jul;95(1):23-30. doi: 10.1016/j.cmpb.2009.01.004. Epub 2009 Feb 20.
9
Validation of subject-specific automated p-FE analysis of the proximal femur.
J Biomech. 2009 Feb 9;42(3):234-41. doi: 10.1016/j.jbiomech.2008.10.039. Epub 2008 Dec 31.
10
Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16010-5. doi: 10.1073/pnas.0706086104. Epub 2007 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验