Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, Sydney, Australia.
J Anat. 2011 Jan;218(1):40-6. doi: 10.1111/j.1469-7580.2010.01289.x. Epub 2010 Aug 31.
In recent years, finite element analysis (FEA) has been increasingly applied to examine and predict the mechanical behaviour of craniofacial and other bony structures. Traditional methods used to determine material properties and validate finite element models (FEMs) have met with variable success, and can be time-consuming. An implicit assumption underlying many FE studies is that relatively high localized stress/strain magnitudes identified in FEMs are likely to predict material failure. Here we present a new approach that may offer some advantages over previous approaches. Recently developed technology now allows us to both image and conduct mechanical tests on samples in situ using a materials testing stage (MTS) fitted inside the microCT scanner. Thus, micro-finite element models can be created and validated using both quantitative and qualitative means. In this study, a rat vertebra was tested under compressive loading until failure using an MTS. MicroCT imaging of the vertebra before mechanical testing was used to create a high resolution finite element model of the vertebra. Load-displacement data recorded during the test were used to calculate the effective Young's modulus of the bone (found to be 128 MPa). The microCT image of the compressed vertebra was used to assess the predictive qualities of the FE model. The model showed the highest stress concentrations in the areas that failed during the test. Clearly, our analyses do not directly address biomechanics of the craniofacial region; however, the methodology adopted here could easily be applied to examine the properties and behaviour of specific craniofacial structures, or whole craniofacial regions of small vertebrates. Experimentally validated micro-FE analyses are a powerful method in the study of materials with complex microstructures such as bone.
近年来,有限元分析(FEA)越来越多地被应用于研究和预测颅面和其他骨结构的力学行为。传统的用于确定材料性能和验证有限元模型(FEM)的方法取得了不同程度的成功,而且可能很耗时。许多 FE 研究的一个隐含假设是,在 FEM 中确定的相对较高的局部应力/应变幅度很可能预测材料失效。在这里,我们提出了一种可能优于以前方法的新方法。最近开发的技术现在允许我们使用配备在 microCT 扫描仪内部的材料测试台(MTS)对原位样本进行成像和机械测试。因此,可以使用定量和定性的方法创建和验证微有限元模型。在这项研究中,使用 MTS 对大鼠椎骨进行压缩加载直至失效测试。在进行机械测试之前对椎骨进行 microCT 成像,以创建椎骨的高分辨率有限元模型。测试过程中记录的载荷-位移数据用于计算骨的有效杨氏模量(发现为 128 MPa)。压缩椎骨的 microCT 图像用于评估 FE 模型的预测质量。模型显示在测试过程中失效的区域的应力集中最高。显然,我们的分析并没有直接解决颅面区域的生物力学问题;然而,这里采用的方法可以很容易地应用于检查特定颅面结构或小型脊椎动物的整个颅面区域的特性和行为。经过实验验证的微 FE 分析是研究具有复杂微观结构的材料(如骨骼)的一种强大方法。