Neurology and Neurological Sciences, Stanford University, CA 94305, USA.
J Physiol. 2010 Nov 15;588(Pt 22):4401-14. doi: 10.1113/jphysiol.2010.191858. Epub 2010 Sep 6.
Sodium-potassium ATPase ('Na(+)-K(+) ATPase') contributes to the maintenance of the resting membrane potential and the transmembrane gradients for Na(+) and K(+) in neurons. Activation of Na(+)-K(+) ATPase may be important in controlling increases in intracellular sodium during periods of increased neuronal activity. Down-regulation of Na(+)-K(+) ATPase activity is implicated in numerous CNS disorders, including epilepsy. Although Na(+)-K(+) ATPase is present in all neurons, little is known about its activity in different subclasses of neocortical cells. We assessed the physiological properties of Na(+)-K(+) ATPase in fast-spiking (FS) interneurons and pyramidal (PYR) cells to test the hypothesis that Na(+)-K(+) ATPase activity would be relatively greater in neurons that generated high frequency action potentials (the FS cells). Whole-cell patch clamp recordings were made from FS and PYR neurons in layer V of rat sensorimotor cortical slices maintained in vitro using standard techniques. Bath perfusion of Na(+)-K(+) ATPase antagonists (ouabain or dihydro-ouabain) induced either a membrane depolarization in current clamp, or inward current under voltage clamp in both cell types. PYR neurons were divided into two subpopulations based on the amplitude of the voltage or current shift in response to Na(+)-K(+) ATPase blockade. The two PYR cell groups did not differ significantly in electrophysiological properties including resting membrane potential, firing pattern, input resistance and capacitance. Membrane voltage responses of FS cells to Na(+)-K(+) ATPase blockade were intermediate between the two PYR cell groups (P < 0.05). The resting Na(+)-K(+) ATPase current density in FS interneurons, assessed by application of blockers, was 3- to 7-fold larger than in either group of PYR neurons. Na(+)-K(+) ATPase activity was increased either through direct Na(+) loading via the patch pipette or by focal application of glutamate (20 mM puffs). Under these conditions FS interneurons exhibited the largest increase in Na(+)-K(+) ATPase activity. We conclude that resting Na(+)-K(+) ATPase activity and sensitivity to changes in internal Na(+) concentration vary between and within classes of cortical neurons. These differences may have important consequences in pathophysiological disorders associated with down-regulation of Na(+)-K(+) ATPase and hyperexcitability within cortical networks.
钠钾 ATP 酶(“Na(+)-K(+) ATPase”)有助于维持神经元的静息膜电位和 Na(+)和 K(+)的跨膜梯度。在神经元活动增加期间,Na(+)-K(+) ATP 酶的激活可能对控制细胞内 Na(+)的增加很重要。Na(+)-K(+) ATP 酶活性下调与包括癫痫在内的许多中枢神经系统疾病有关。尽管 Na(+)-K(+) ATP 酶存在于所有神经元中,但对于其在新皮层不同细胞类型中的活性知之甚少。我们评估了快速发射(FS)中间神经元和锥体(PYR)细胞中 Na(+)-K(+) ATP 酶的生理特性,以检验 Na(+)-K(+) ATP 酶活性在产生高频动作电位的神经元(FS 细胞)中相对较高的假设。使用标准技术,在体外维持的大鼠感觉运动皮层切片的第 V 层中,通过全细胞膜片钳记录 FS 和 PYR 神经元。Na(+)-K(+) ATP 酶拮抗剂(哇巴因或二氢哇巴因)的浴灌注在两种细胞类型中均诱导电流钳中的膜去极化,或电压钳中的内向电流。根据对 Na(+)-K(+) ATP 酶阻断的电压或电流移位幅度,将 PYR 神经元分为两个亚群。这两个 PYR 细胞群在包括静息膜电位、发射模式、输入电阻和电容在内的电生理特性方面没有显著差异。FS 细胞对 Na(+)-K(+) ATP 酶阻断的膜电压反应介于两个 PYR 细胞群之间(P < 0.05)。通过应用阻滞剂评估的 FS 中间神经元的静息 Na(+)-K(+) ATP 酶电流密度比任何一组 PYR 神经元大 3 到 7 倍。Na(+)-K(+) ATP 酶活性通过通过贴片电极直接加载 Na(+)或通过局部施加谷氨酸(20 mM 脉冲)来增加。在这些条件下,FS 中间神经元表现出最大的 Na(+)-K(+) ATP 酶活性增加。我们得出结论,静息 Na(+)-K(+) ATP 酶活性和对细胞内 Na(+)浓度变化的敏感性在皮质神经元的类和类之间以及类内变化。这些差异在与皮质网络中 Na(+)-K(+) ATP 酶下调和过度兴奋相关的病理生理障碍中可能具有重要意义。