Suppr超能文献

一种基于特征的神经网络的光学实现及其在自动目标识别中的应用。

Optical implementation of a feature-based neural network with application to automatic target recognition.

作者信息

Chao T H, Stoner W W

出版信息

Appl Opt. 1993 Mar 10;32(8):1359-69. doi: 10.1364/AO.32.001359.

Abstract

An optical neural network based on the neocognitron paradigm [IEEE Trans. Syst. Man Cybern. SMC-13, 826-834 (1983)] is introduced. A novel aspect of the architectural design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the output of the feature correlator iteratively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

摘要

介绍了一种基于新认知机范式的光学神经网络[《IEEE系统、人与控制论汇刊》SMC - 13,826 - 834(1983年)]。该架构设计的一个新颖之处在于每个处理层内的平移不变多通道傅里叶光学相关。通过将特征相关器的输出迭代反馈到输入空间光调制器并更新傅里叶滤波器来实现多层处理。通过用从目标图像中提取的特征对神经网络进行训练,实现了具有类内容错和类间区分的成功模式识别。提供了详细的系统描述。还给出了用于空间目标识别的两层神经网络的实验演示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验