Suppr超能文献

利用非线性联合变换相关器实现用于人脸识别的神经网络的光学方法。

Optical implementation of neural networks for face recognition by the use of nonlinear joint transform correlators.

作者信息

Javidi B, Li J, Tang Q

出版信息

Appl Opt. 1995 Jul 10;34(20):3950-62. doi: 10.1364/AO.34.003950.

Abstract

We describe a nonlinear joint transform correlator-based two-layer neural network that uses a supervised learning algorithm for real-time face recognition. The system is trained with a sequence of facial images and is able to classify an input face image in real time. Computer simulations and optical experimental results are presented. The processor can be manufactured into a compact low-cost optoelectronic system. The use of the nonlinear joint transform correlator provides good noise robustness and good image discrimination.

摘要

我们描述了一种基于非线性联合变换相关器的两层神经网络,该网络使用监督学习算法进行实时人脸识别。该系统通过一系列面部图像进行训练,能够实时对输入的面部图像进行分类。文中给出了计算机模拟和光学实验结果。该处理器可以制造成紧凑的低成本光电系统。非线性联合变换相关器的使用提供了良好的噪声鲁棒性和良好的图像辨别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验