State Kay Laboratory of Superhard Materials, Jilin University, Changchun, P R China.
Nanoscale. 2010 Sep;2(9):1699-703. doi: 10.1039/c0nr00052c. Epub 2010 Jul 3.
SnS nanocrystals have been synthesized in a simple and facile way. Sn(6)O(4)(OH)(4) is introduced to synthesize tin sulfide, which is used as tin precursor. By changing the reaction conditions (reaction temperature and Sn/S molar ratio), SnS nanocrystals with different shape and size can be produced. SnS nanoparticles and nanoflowers with orthorhombic crystal structure have uniform size distribution. The SnS nanoflowers firstly transform to polycrystalline nanoflowers, and then become amorphous nanosheets. The drive force of amorphization reduces the high free-energy of nanocrystals. The layered crystal structure of SnS is the main reason for the shape evolution and amorphization processes. The optical properties of nanoparticles are investigated by optical absorption spectra. The optical direct band gap and optical indirect band gap in SnS nanoparticles are 3.6 eV and 1.6 eV, respectively. Compared to direct band gap (1.3 eV) and indirect band gap (1.09 eV) in bulk SnS, both direct transition and indirect transition in nanoparticles show an obvious quantum-size effect.
SnS 纳米晶体已通过简单易行的方法合成。Sn(6)O(4)(OH)(4) 被引入来合成硫化锡,用作锡前体。通过改变反应条件(反应温度和 Sn/S 摩尔比),可以制备出具有不同形状和尺寸的 SnS 纳米晶体。具有正交晶体结构的 SnS 纳米颗粒和纳米花具有均匀的尺寸分布。SnS 纳米花首先转变为多晶纳米花,然后变成非晶纳米片。非晶化降低了高自由能纳米晶体的驱动力。SnS 的层状晶体结构是形状演变和非晶化过程的主要原因。通过光学吸收光谱研究了纳米颗粒的光学性质。SnS 纳米颗粒的光学直接带隙和光学间接带隙分别为 3.6 eV 和 1.6 eV。与体相 SnS 的直接带隙(1.3 eV)和间接带隙(1.09 eV)相比,纳米颗粒中的直接跃迁和间接跃迁均表现出明显的量子尺寸效应。