Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA.
J Mol Med (Berl). 2010 Oct;88(10):1011-20. doi: 10.1007/s00109-010-0679-1. Epub 2010 Sep 4.
Right ventricular failure (RVF) is the leading cause of death in pulmonary arterial hypertension (PAH). Some patients with pulmonary hypertension are adaptive remodelers and develop RV hypertrophy (RVH) but retain RV function; others are maladaptive remodelers and rapidly develop RVF. The cause of RVF is unclear and understudied and most PAH therapies focus on regressing pulmonary vascular disease. Studies in animal models and human RVH suggest that there is reduced glucose oxidation and increased glycolysis in both adaptive and maladaptive RVH. The metabolic shift from oxidative mitochondrial metabolism to the less energy efficient glycolytic metabolism may reflect myocardial ischemia. We hypothesize that in maladaptive RVH a vicious cycle of RV ischemia and transcription factor activation causes a shift from oxidative to glycolytic metabolism thereby ultimately promoting RVF. Interrupting this cycle, by reducing ischemia or enhancing glucose oxidation, might be therapeutic. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, has beneficial effects on RV function and metabolism in experimental RVH, notably improving glucose oxidation and enhancing RV function. This suggests the mitochondrial dysfunction in RVH may be amenable to therapy. In this mini review, we describe the role of impaired mitochondrial metabolism in RVH, using rats with adaptive (pulmonary artery banding) or maladaptive (monocrotaline-induced pulmonary hypertension) RVH as models of human disease. We will discuss the possible mechanisms, relevant transcriptional factors, and the potential of mitochondrial metabolic therapeutics in RVH and RVF.
右心衰竭(RVF)是肺动脉高压(PAH)患者死亡的主要原因。部分肺动脉高压患者为适应性重构者,出现右心室肥厚(RVH)但保留右心功能;另一部分为失代偿性重构者,迅速发展为 RVF。RVF 的病因尚不清楚且研究较少,大多数 PAH 治疗方法主要集中于逆转肺血管疾病。动物模型和人类 RVH 的研究表明,适应性和失代偿性 RVH 中均存在葡萄糖氧化减少和糖酵解增加。从氧化线粒体代谢向能量效率较低的糖酵解代谢的代谢转变可能反映了心肌缺血。我们假设在失代偿性 RVH 中,RV 缺血和转录因子激活的恶性循环导致氧化代谢向糖酵解代谢转变,从而最终促进 RVF。通过减少缺血或增强葡萄糖氧化来中断这种循环可能具有治疗作用。二氯乙酸是一种丙酮酸脱氢酶激酶抑制剂,对实验性 RVH 的右心功能和代谢具有有益作用,特别是改善葡萄糖氧化并增强 RV 功能。这表明 RVH 中的线粒体功能障碍可能适合治疗。在这篇小型综述中,我们使用适应性(肺动脉结扎)或失代偿性(野百合碱诱导的肺动脉高压)RVH 的大鼠模型来描述受损线粒体代谢在 RVH 中的作用,以模拟人类疾病。我们将讨论可能的机制、相关转录因子以及 RVH 和 RVF 中线粒体代谢治疗的潜力。