Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, USA.
Inorg Chem. 2010 Oct 4;49(19):8873-85. doi: 10.1021/ic101041m.
To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, (L(ASM))Cu(I) (1a) and (L(EOE))Cu(I) (3a), were studied as were the related compound (L(ESE))Cu(I) (2a, L(ESE) = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether, or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH(3)CN and N,N-dimethylformamide (DMF) show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ∼200 mV more positive than 2a). The structures of (L(ASM))Cu(II)(CH(3)OH) (1c) and (L(ESE))Cu(II)(CH(3)OH) (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue intermediate {(L(ASM))Cu(II)}(2)(O(2)(2-)) (1b(P)) with absorption features at 442 (1,500 M(-1) cm(-1)), 530 (8,600 M(-1) cm(-1)), and 605 nm (10,400 M(-1) cm(-1)); these values compare well to the ligand-to-metal charge-transfer (LMCT) transitions previously reported for {(L(ESE))Cu(II)}(2)(O(2)(2-)) (2b(P)). Resonance Raman data for {(L(ASM))Cu(II)}(2)(O(2)(2-)) (1b(P)) support the formation of μ-1,2-peroxo species ν(O-O) = 828 cm(-1)(Δ((18)O(2)) = 48), ν(sym)(Cu-O) = 547 cm(-1) (Δ((18)O(2)) = 23), and ν(asym)(Cu-O) = 497 cm(-1) (Δ((18)O(2)) = 22) and suggest the L(ASM) ligand is a poorer electron donor to copper than is L(ESE). In contrast, the oxygenation of (L(EOE))Cu(I) (3a), possessing an ether donor as an analogue of the thioether in L(ESE), led to the formation of a bis(μ-oxo) species {(L(EOE))Cu(III)}(2)(O(2-))(2) (3b(O); 380 nm, ε ∼ 10,000 M(-1) cm(-1)). This result provides further support for the sulfur influence in 1b(P) and 2b(P), in particular coordination of the sulfur to the Cu. Thermal decomposition of 1b(P) is accompanied by ligand sulfoxidation. The structure of {(L(EOE))Cu(II)(Cl)}(2) (3c) generated from the reductive dehalogenation of organic chlorides suggests that the ether moiety is weakly bound to the cupric ion. A detailed discussion of the spectroscopic and structural characteristics of 1b(P), 2b(P), and 3b(O) is presented.
为了更好地理解硫醚配位在铜-O(2)化学中的作用,研究了四齿 N(3)S 配体 L(ASM)(2-(甲硫基)-N,N-双((吡啶-2-基)甲基)苯甲胺)和相关的烷氧基配体 L(EOE)(2-乙氧基-N,N-双((吡啶-2-基)甲基)乙胺)。研究了相应的铜(I)配合物,(L(ASM))Cu(I)(1a)和(L(EOE))Cu(I)(3a),以及相关的化合物(L(ESE))Cu(I)(2a,L(ESE) = (2-乙硫基-N,N-双((吡啶-2-基)甲基)乙胺)。1a 的 X 射线结构及其溶液电导率表明,该分子具有硫醚配位的单体结构,在溶液中保持稳定。相比之下,衍生的 Cu(I)-CO 配合物的 C-O 伸缩频率表明,对于这些配合物,调制的配体臂,无论是芳基硫醚、烷基硫醚还是醚,都不与亚铜离子配位。1a 和 2a 在 CH(3)CN 和 N,N-二甲基甲酰胺 (DMF) 中的电化学数据表明,与烷基硫醚(1a 比 2a 正约 200 mV)相比,硫醚部分是较差的电子供体。(L(ASM))Cu(II)(CH(3)OH)(1c)和(L(ESE))Cu(II)(CH(3)OH)(2c)的结构也已获得,并表明铜的配位环境几乎相同。在低温下对 1a 进行氧化得到特征性的深蓝色中间产物{(L(ASM))Cu(II)}(2)(O(2)(2-))(1b(P)),其吸收特征在 442(1,500 M(-1) cm(-1))、530(8,600 M(-1) cm(-1))和 605 nm(10,400 M(-1) cm(-1))处;这些值与先前报道的{(L(ESE))Cu(II)}(2)(O(2)(2-))(2b(P))的配体到金属电荷转移(LMCT)跃迁值相匹配。{(L(ASM))Cu(II)}(2)(O(2)(2-))(1b(P))的共振拉曼数据支持μ-1,2-过氧物种ν(O-O) = 828 cm(-1)(Δ((18)O(2)) = 48)、ν(sym)(Cu-O) = 547 cm(-1) (Δ((18)O(2)) = 23)和 ν(asym)(Cu-O) = 497 cm(-1) (Δ((18)O(2)) = 22)的形成,并表明 L(ASM)配体是比 L(ESE)更差的铜电子供体。相比之下,(L(EOE))Cu(I)(3a)的氧化,其醚供体为 L(ESE)中的硫醚类似物,导致形成双(μ-氧)物种{(L(EOE))Cu(III)}(2)(O(2-))(2)(3b(O);380 nm,ε∼10,000 M(-1) cm(-1))。这一结果为 1b(P)和 2b(P)中的硫的影响提供了进一步的支持,特别是硫与 Cu 的配位。1b(P)的热分解伴随着配体的氧化。由有机氯化物的还原脱卤生成的{(L(EOE))Cu(II)(Cl)}(2)(3c)的结构表明,醚部分与铜(II)离子弱结合。详细讨论了 1b(P)、2b(P)和 3b(O)的光谱和结构特征。