Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Inorg Chem. 2020 Nov 16;59(22):16567-16581. doi: 10.1021/acs.inorgchem.0c02495. Epub 2020 Nov 2.
Cu(I) active sites in metalloproteins are involved in O activation, but their O reactivity is difficult to study due to the Cu(I) d closed shell which precludes the use of conventional spectroscopic methods. Kβ X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kβ XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kβ XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kβ emission feature reflects the ionization energy of ligand p valence orbitals, the high-energy Kβ emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kβ XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GO) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kβ emission feature in the Cu(I)-GO data has information about the MO containing mostly Cu 3d character that is the frontier molecular orbital (FMO) for O activation, which shows the potential of Kβ XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.
金属蛋白中的 Cu(I)活性位点参与 O 活化,但由于 Cu(I)d 满壳层,传统的光谱方法无法使用,因此其 O 反应性难以研究。Kβ 射线发射光谱 (XES) 是一种研究 Cu(I) 位点的有前途的技术,因为它可以检测到由占据轨道电子跃迁发射的光子。在这里,我们展示了 Kβ XES 在探测模型配合物和金属蛋白中 Cu(I) 位点的应用。使用 Cu(I)Cl,通过改变入射 X 射线光子能量,确定了双电离 (DI) 态的发射特征,并提出了一种合理的方法来校正数据以去除 DI 贡献。比较和分析了具有生物相关的 N/S 配体和不同配位数的 Cu(I)模型配合物的 Kβ XES 光谱,借助密度泛函理论 (DFT) 计算,评估了光谱特征对配体环境的敏感性。虽然低能 Kβ 发射特征反映了配体 p 价轨道的电离能,但高能 Kβ 发射特征对应于主要具有 Cu 3d 特征的分子轨道 (MO) 的跃迁,其强度由配体介导的 d-p 混合决定。预处理半乳糖氧化酶 (GO) 中 Cu(I) 位点的 Kβ XES 光谱支持了我们之前的 X 射线吸收光谱和 DFT 研究确定的 1Tyr/2His 结构模型。GO 数据中的高能 Kβ 发射特征包含主要具有 Cu 3d 特征的 MO 信息,该 MO 是 O 活化的前线分子轨道 (FMO),这表明 Kβ XES 在探测与小分子活化相关的金属蛋白中的 Cu(I) FMO 方面具有潜力。