Suppr超能文献

从调控网络建模预测 Th 细胞类型的多样性和可塑性。

Diversity and plasticity of Th cell types predicted from regulatory network modelling.

机构信息

Technological Advances for Genomics and Clinics, INSERM U928, Marseille, France.

出版信息

PLoS Comput Biol. 2010 Sep 2;6(9):e1000912. doi: 10.1371/journal.pcbi.1000912.

Abstract

Alternative cell differentiation pathways are believed to arise from the concerted action of signalling pathways and transcriptional regulatory networks. However, the prediction of mammalian cell differentiation from the knowledge of the presence of specific signals and transcriptional factors is still a daunting challenge. In this respect, the vertebrate hematopoietic system, with its many branching differentiation pathways and cell types, is a compelling case study. In this paper, we propose an integrated, comprehensive model of the regulatory network and signalling pathways controlling Th cell differentiation. As most available data are qualitative, we rely on a logical formalism to perform extensive dynamical analyses. To cope with the size and complexity of the resulting network, we use an original model reduction approach together with a stable state identification algorithm. To assess the effects of heterogeneous environments on Th cell differentiation, we have performed a systematic series of simulations considering various prototypic environments. Consequently, we have identified stable states corresponding to canonical Th1, Th2, Th17 and Treg subtypes, but these were found to coexist with other transient hybrid cell types that co-express combinations of Th1, Th2, Treg and Th17 markers in an environment-dependent fashion. In the process, our logical analysis highlights the nature of these cell types and their relationships with canonical Th subtypes. Finally, our logical model can be used to explore novel differentiation pathways in silico.

摘要

人们认为,替代细胞分化途径是信号通路和转录调控网络协同作用的结果。然而,仅从特定信号和转录因子的存在来预测哺乳动物细胞的分化仍然是一个艰巨的挑战。在这方面,具有多种分支分化途径和细胞类型的脊椎动物造血系统是一个引人注目的案例研究。在本文中,我们提出了一个控制 Th 细胞分化的调控网络和信号通路的综合全面模型。由于大多数可用数据是定性的,我们依赖逻辑形式主义来进行广泛的动力学分析。为了处理由此产生的网络的大小和复杂性,我们使用了一种原始的模型简化方法以及一种稳定状态识别算法。为了评估异质环境对 Th 细胞分化的影响,我们进行了一系列系统的模拟,考虑了各种原型环境。因此,我们确定了与经典 Th1、Th2、Th17 和 Treg 亚型相对应的稳定状态,但这些状态被发现与其他瞬态杂交细胞类型共存,这些细胞类型以环境依赖的方式共同表达 Th1、Th2、Treg 和 Th17 标志物的组合。在这个过程中,我们的逻辑分析突出了这些细胞类型的性质及其与经典 Th 亚型的关系。最后,我们的逻辑模型可以用于在计算机上探索新的分化途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ac/2932677/369d9d4f23e7/pcbi.1000912.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验