Suppr超能文献

改进的 fMRI 校准:精确控制的高氧与高碳酸刺激。

Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli.

机构信息

McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

出版信息

Neuroimage. 2011 Jan 15;54(2):1102-11. doi: 10.1016/j.neuroimage.2010.08.070. Epub 2010 Sep 7.

Abstract

The calibration of functional magnetic resonance imaging (fMRI) for the estimation of neuronal activation-induced changes in cerebral metabolic rate of oxygen (CMRO(2)) has been achieved through hypercapnic-induced iso-metabolic increases in cerebral blood flow (CBF). Hypercapnia (HC) has been traditionally implemented through alterations in the fixed inspired fractional concentrations of carbon dioxide (F(I)CO(2)) without otherwise controlling end-tidal partial pressures of carbon dioxide (P(ET)CO(2)) or oxygen (P(ET)O(2)). There are several shortcomings to the use of this manual HC method that may be improved by using precise targeting of P(ET)CO(2) while maintaining iso-oxia. Similarly, precise control of blood gases can be used to induce isocapnic hyperoxia (HO) to reduce venous deoxyhaemoglobin (dHb) and thus increase BOLD signals, without appreciably altering CMRO(2) or CBF. The aim of our study was to use precise end-tidal targeting to compare the calibration of BOLD signals under an isocapnic hyperoxic protocol (HOP) (rises in P(ET)O(2) to 140, 240 and 340 mm Hg from baseline) to that of an iso-oxic hypercapnic protocol (HCP) (rises in P(ET)CO(2) of 3, 5, 7 and 9 mm Hg from baseline). Nine healthy volunteers were imaged at 3T while monitoring end-tidal gas concentrations and simultaneously measuring BOLD and CBF signals, via arterial spin labeling (ASL), during graded HCP and HOP, alternating with normocapnic states in a blocked experimental design. The variability of the calibration constant obtained under HOP (M(HOP)) was 0.3-0.5 that of the HCP one (M(HCP)). In addition, M-variances with precise gas targeting (M(HCP) and M(HOP)) were less than those reported in studies using traditional F(I)CO(2) and F(I)O(2) methods (M(HC) and M(HO), respectively). We conclude that precise controlled gas delivery markedly improves BOLD-calibration for fMRI studies of oxygen metabolism with both the HCP and the more precise HOP-alternative.

摘要

通过诱导脑血流(CBF)的等代谢增加来实现功能磁共振成像(fMRI)对神经元激活诱导的脑氧代谢率(CMRO(2))变化的校准。传统上,通过改变固定吸入的二氧化碳分数浓度(F(I)CO(2))来实现高碳酸血症(HC),而不控制二氧化碳的潮气末分压(P(ET)CO(2))或氧气(P(ET)O(2))。使用这种手动 HC 方法存在几个缺点,可以通过精确靶向 P(ET)CO(2)同时保持等氧来改善。同样,可以使用精确的血气控制来诱导等碳酸血症高氧(HO)以减少静脉去氧血红蛋白(dHb),从而增加 BOLD 信号,而不会明显改变 CMRO(2)或 CBF。我们的研究目的是使用精确的潮气末靶向来比较等碳酸血症高氧方案(HOP)(P(ET)O(2)从基线上升至 140、240 和 340mmHg)和等氧高碳酸血症方案(HCP)(P(ET)CO(2)从基线上升 3、5、7 和 9mmHg)下 BOLD 信号的校准。在 3T 下对 9 名健康志愿者进行成像,同时监测潮气末气体浓度,并通过动脉自旋标记(ASL)同时测量 BOLD 和 CBF 信号,在分级 HCP 和 HOP 期间交替进行,在阻塞性实验设计中与正常碳酸血症状态交替。HOP 下获得的校准常数的变异性(M(HOP))是 HCP 下的 0.3-0.5(M(HCP))。此外,使用精确气体靶向(M(HCP)和 M(HOP))的 M 方差小于使用传统 F(I)CO(2)和 F(I)O(2)方法(M(HC)和 M(HO))报告的方差。我们得出结论,精确控制气体输送可显著改善 HCP 和更精确的 HOP 替代方案的 fMRI 氧代谢研究的 BOLD 校准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验