DTU Nanotech, Department of Nano- and Microtechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
Nanotechnology. 2010 Oct 8;21(40):405304. doi: 10.1088/0957-4484/21/40/405304. Epub 2010 Sep 10.
Nano- and microelectromechanical structures for in situ operation in a transmission electron microscope (TEM) were fabricated with a turnaround time of 20 min and a resolution better than 100 nm. The structures are defined by focused ion beam (FIB) milling in 135 nm thin membranes of single crystalline silicon extending over the edge of a pre-fabricated silicon microchip. Four-terminal resistance measurements of FIB-defined nanowires showed at least two orders of magnitude increase in resistivity compared to bulk. We show that the initial high resistance is due to amorphization of silicon, and that current annealing recrystallizes the structure, causing the electrical properties to partly recover to the pristine bulk resistivity. In situ imaging of the annealing process revealed both continuous and abrupt changes in the crystal structure, accompanied by instant changes of the electrical conductivity. The membrane structures provide a simple way to design electron-transparent nanodevices with high local temperature gradients within the field of view of the TEM, allowing detailed studies of surface diffusion processes. We show two examples of heat-induced coarsening of gold on a narrow freestanding bridge, where local temperature gradients are controlled via the electrical current paths. The separation of device processing into a one-time batch-level fabrication of identical, generic membrane templates, and subsequent device-specific customization by FIB milling, provides unparalleled freedom in device layout combined with very short effective fabrication time. This approach significantly speeds up prototyping of nanodevices such as resonators, actuators, sensors and scanning probes with state-of-art resolution.
利用 turnaround time 为 20 分钟且分辨率优于 100nm 的方法,制造了用于透射电子显微镜(TEM)中现场操作的纳米和微机电结构。这些结构是通过聚焦离子束(FIB)在单晶硅的 135nm 薄膜中定义的,薄膜延伸到预制硅微芯片的边缘。FIB 定义的纳米线的四端电阻测量显示,与体相比,电阻率至少增加了两个数量级。我们表明,初始高电阻是由于硅的非晶化,而电流退火使结构再结晶,导致电性能部分恢复到原始体电阻率。原位成像显示了晶体结构的连续和不连续变化,伴随着电导率的瞬时变化。该膜结构提供了一种简单的方法,可以设计具有高局部温度梯度的电子透明纳米器件,在 TEM 的视野内允许对表面扩散过程进行详细研究。我们展示了两个在窄的自由桥金上的热诱导粗化的例子,其中通过电流路径控制局部温度梯度。将器件处理分离为一次性批量制造相同的、通用的膜模板,以及随后通过 FIB 铣削进行特定于器件的定制,为器件布局提供了无与伦比的自由度,同时具有非常短的有效制造时间。这种方法大大加快了具有最先进分辨率的谐振器、执行器、传感器和扫描探针等纳米器件的原型制作速度。