Suppr超能文献

Inversion of lidar signals with the slope method.

作者信息

Kunz G J, de Leeuw G

出版信息

Appl Opt. 1993 Jun 20;32(18):3249-56. doi: 10.1364/AO.32.003249.

Abstract

In homogeneous atmospheres, backscatter and extinction coefficients are commonly determined by the inversion of lidar signals by using the slope method, i.e., from a linear least-squares fit to the logarithm on the range-compensated lidar return. We investigate the accuracy of this method. A quantitative analysis is presented of the influence of white noise and atmospheric extinction on the accuracy of the slope method and on the maximum range of lidar systems. To meet this objective, we simulate lidar signals with extinction coefficients ranging from 10(-3) km(-1) to 10 km(-1) with different signal-to-noise ratios. It is shown that the backscatter coefficient can be determined by using the slope method with an ccuracy of better than ~ 10% if the extinction coefficient is smaller than 1 km(-1) and the signal-to-noise ratio is better than ~ 1000. The accuracy in the calculated extinction coefficient is only better than ~ 10% if the extinction is larger than 1 km(-1) and the signal-to-noise ratio is better than ~2000. If th atmospheric extinction coefficient is smaller than 0.1 km(-1), then it is not possible to invert the extinction from lidar measurements with an accuracy of 10% or better unless the signal-to-noise ratio isunrealistically high.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验