Suppr超能文献

通过使用偶函数和奇函数对平面进行绝对测试。

Absolute testing of flats by using even and odd functions.

作者信息

Ai C, Wyant J C

出版信息

Appl Opt. 1993 Sep 1;32(25):4698-705. doi: 10.1364/AO.32.004698.

Abstract

We describe a modified three-flat method. In a Cartesian coordinate system, a flat can be expressed as the sum of even-odd, odd-even, even-even, and odd-odd functions. The even-odd and the odd-even functions of each flat are obtained first, and then the even-even function is calculated. All three functions are exact. The odd-odd function is difficult to obtain. In theory, this function can be solved by rotating the flat 90°, 45°, 22.5°, etc. The components of the Fourier series of this odd-odd function are derived and extracted from each rotation of the flat. A flat is approximated by the sum of the first three functions and the known components of the odd-odd function. In the experiments, the flats are oriented in six configurations by rotating the flats 180°, 90°, and 45° with respect to one another, and six measurements are performed. The exact profiles along every 45° diameter are obtained, and the profile in the area between two adjacent diameters of these diameters is also obtained with some approximation. The theoretical derivation, experiment results, and error analysis are presented.

摘要

我们描述了一种改进的三平面方法。在笛卡尔坐标系中,一个平面可以表示为偶奇、奇偶、偶偶和奇奇函数的和。首先获得每个平面的偶奇函数和奇偶函数,然后计算偶偶函数。这三个函数都是精确的。奇奇函数很难获得。理论上,这个函数可以通过将平面旋转90°、45°、22.5°等来求解。从平面的每次旋转中推导并提取该奇奇函数的傅里叶级数分量。一个平面由前三个函数和奇奇函数的已知分量之和近似表示。在实验中,通过将平面彼此相对旋转180°、90°和45°,将平面定向为六种配置,并进行六次测量。获得了沿每45°直径的精确轮廓,并且在这些直径的两个相邻直径之间的区域中的轮廓也通过某种近似获得。给出了理论推导、实验结果和误差分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验