Suppr超能文献

利用人工神经网络预测未监测流域的水质。

Predicting water quality in unmonitored watersheds using artificial neural networks.

机构信息

School of Forestry and Wildlife Sciences, Auburn Univ., 602 Duncan Dr., Auburn, AL 36849-5126, USA.

出版信息

J Environ Qual. 2010 Jul-Aug;39(4):1429-40. doi: 10.2134/jeq2009.0441.

Abstract

Land use and land cover (LULC) play a central role in fate and transport of water quality (WQ) parameters in watersheds. Developing relationships between LULC and WQ parameters is essential for evaluating the quality of water resources. In this paper, we present an artificial neural network (ANN)-based methodology to predict WQ parameters in watersheds with no prior WQ data. The model relies on LULC percentages, temperature, and stream discharge as inputs. The approach is applied to 18 watersheds in west Georgia, United States, having a LULC gradient and varying in size from 2.96 to 26.59 km2. Out of 18 watersheds, 12 were used for training, 3 for validation, and 3 for testing the ANN model. The WQ parameters tested are total dissolved solids (TDS), total suspended solids (TSS), chlorine (Cl), nitrate (NO3), sulfate (SO4), sodium (Na), potassium (K), total phosphorus (TP), and dissolved organic carbon (DOC). Model performances are evaluated on the basis of a performance rating system whereby performances are categorized as unsatisfactory, satisfactory, good, or very good. Overall, the ANN models developed using the training data performed quite well in the independent test watersheds. Based on the rating system TDS, Cl, NO3, SO4, Na, K, and DOC had a performance of at least "good" in all three test watersheds. The average performance for TSS and TP in the three test watersheds were "good." Overall the model performed better in the pastoral and forested watersheds with an average rating of "very good." The average model performance at the urban watershed was "good." This study showed that if WQ and LULC data are available from multiple watersheds in an area with relatively similar physiographic properties, then one can successfully predict the impact of LULC changes on WQ in any nearby watershed.

摘要

土地利用和土地覆被(LULC)在流域水质(WQ)参数的命运和传输中起着核心作用。建立 LULC 与 WQ 参数之间的关系对于评估水资源质量至关重要。在本文中,我们提出了一种基于人工神经网络(ANN)的方法,用于预测无先验 WQ 数据的流域的 WQ 参数。该模型依赖于 LULC 百分比、温度和溪流流量作为输入。该方法应用于美国佐治亚州西部的 18 个流域,这些流域具有 LULC 梯度,面积从 2.96 到 26.59km2 不等。在 18 个流域中,有 12 个用于训练,3 个用于验证,3 个用于测试 ANN 模型。测试的 WQ 参数是总溶解固体(TDS)、总悬浮固体(TSS)、氯(Cl)、硝酸盐(NO3)、硫酸盐(SO4)、钠(Na)、钾(K)、总磷(TP)和溶解有机碳(DOC)。根据性能评级系统评估模型性能,该系统将性能分为不满意、满意、良好和非常好。总体而言,使用训练数据开发的 ANN 模型在独立测试流域中的表现相当不错。根据评级系统,在所有三个测试流域中,TDS、Cl、NO3、SO4、Na、K 和 DOC 的性能均至少为“良好”。在三个测试流域中,TSS 和 TP 的平均性能为“良好”。总体而言,该模型在以畜牧业和森林为主的流域中表现更好,平均评级为“非常好”。在城市流域中,该模型的平均性能为“良好”。本研究表明,如果在具有相对相似地貌特征的区域内,从多个流域获得 WQ 和 LULC 数据,则可以成功预测 LULC 变化对附近任何流域 WQ 的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验