Suppr超能文献

轴向 T2 加权磁共振成像的全自动脑提取算法。

Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images.

机构信息

Department of Computer Science and Applications, Gandhigram Rural Institute, Gandhigram, Tamilnadu 624302, India.

出版信息

Comput Biol Med. 2010 Oct;40(10):811-22. doi: 10.1016/j.compbiomed.2010.08.004. Epub 2010 Sep 15.

Abstract

In this paper we propose two brain extraction algorithms (BEA) for T2-weighted magnetic resonance imaging (MRI) scans. The T2-weighted image is first filtered with a low pass filter (LPF) to remove or subdue the background noise. Then the image is diffused to enhance the brain boundaries. Using Ridler's method a threshold value for intensity is obtained. Using the threshold value a rough binary brain image is obtained. By performing morphological operations and using the largest connected component (LCC) analysis, a brain mask is obtained from which the brain is extracted. This method uses only 2D information of slices and is named as 2D-BEA. The concept of LCC failed in few slices. To overcome this problem, 3D information available in adjacent slices is used which resulted in 3D-BEA. Experimental results on 20 MRI data sets show that the proposed 3D-BEA gave excellent results. The performance of this 3D-BEA is better than 2D-BEA and other popular methods, brain extraction tool (BET) and brain surface extractor (BSE).

摘要

本文提出了两种用于 T2 加权磁共振成像 (MRI) 扫描的脑提取算法 (BEA)。首先,使用低通滤波器 (LPF) 对 T2 加权图像进行滤波,以去除或抑制背景噪声。然后,对图像进行扩散处理以增强脑边界。使用里德勒方法获得强度的阈值。使用该阈值获得粗略的二进制脑图像。通过执行形态操作并使用最大连通分量 (LCC) 分析,从该脑掩模中提取脑。该方法仅使用切片的 2D 信息,因此称为 2D-BEA。LCC 的概念在少数几个切片中失败。为了克服这个问题,使用了相邻切片中的 3D 信息,从而得到了 3D-BEA。对 20 个 MRI 数据集的实验结果表明,所提出的 3D-BEA 取得了优异的结果。这种 3D-BEA 的性能优于 2D-BEA 和其他流行的方法,如脑提取工具 (BET) 和脑表面提取器 (BSE)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验