Suppr超能文献

苏云金芽孢杆菌营养期杀虫蛋白与核糖体 S2 蛋白相互作用触发草地贪夜蛾幼虫的杀虫活性。

Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda.

机构信息

Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.

出版信息

Appl Environ Microbiol. 2010 Nov;76(21):7202-9. doi: 10.1128/AEM.01552-10. Epub 2010 Sep 10.

Abstract

Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through yeast two-hybrid system with Vip3A as bait identified ribosomal protein S2 as a toxicity-mediating interacting partner protein. The Vip3A-ribosomal-S2 protein interaction was validated by in vitro pulldown assays and by RNA interference-induced knockdown experiments. Knockdown of expression of S2 protein in Sf21 cells resulted in reduced toxicity of the Vip3A protein. These observations were further extended to adult fifth-instar larvae of Spodoptera litura. Knockdown of S2 expression by injecting corresponding double-stranded RNA resulted in reduced mortality of larvae to Vip3A toxin. Intracellular visualization of S2 protein and Vip3A through confocal microscopy revealed their interaction and localization in cytoplasm and surface of Sf21 cells.

摘要

植物源杀虫蛋白(Vip3A)由苏云金芽孢杆菌的某些菌株合成,作为一种细胞外杀虫毒素。Vip3A 对几种鳞翅目作物害虫具有活性。多鳞目害虫夜蛾,及其细胞系 Sf21 对 Vip3A 敏感,易溶解。通过酵母双杂交系统用 Vip3A 作为诱饵筛选 Sf21 细胞 cDNA 文库,鉴定出核糖体蛋白 S2 是一种介导毒性的相互作用伙伴蛋白。通过体外下拉实验和 RNA 干扰诱导的敲低实验验证了 Vip3A-核糖体-S2 蛋白的相互作用。Sf21 细胞中 S2 蛋白表达的敲低导致 Vip3A 蛋白毒性降低。这些观察结果进一步扩展到斜纹夜蛾的第五龄幼虫。通过注射相应的双链 RNA 敲低 S2 表达导致幼虫对 Vip3A 毒素的死亡率降低。通过共聚焦显微镜对 S2 蛋白和 Vip3A 的细胞内可视化显示它们在 Sf21 细胞的细胞质和表面相互作用和定位。

相似文献

6
Structural and Functional Insights into the C-terminal Fragment of Insecticidal Vip3A Toxin of .
Toxins (Basel). 2020 Jul 5;12(7):438. doi: 10.3390/toxins12070438.
9
The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects.
Appl Environ Microbiol. 1997 Feb;63(2):532-6. doi: 10.1128/aem.63.2.532-536.1997.
10
Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species.
J Insect Physiol. 2014 Aug;67:76-84. doi: 10.1016/j.jinsphys.2014.06.008. Epub 2014 Jun 28.

引用本文的文献

1
2
Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin.
PLoS Biol. 2024 Jul 2;22(7):e3002704. doi: 10.1371/journal.pbio.3002704. eCollection 2024 Jul.
3
Bacterial biopesticides: Biodiversity, role in pest management and beneficial impact on agricultural and environmental sustainability.
Heliyon. 2024 May 18;10(11):e31550. doi: 10.1016/j.heliyon.2024.e31550. eCollection 2024 Jun 15.
4
In Vivo and In Vitro Interactions between Exopolysaccharides from HD270 and Vip3Aa11 Protein.
Toxins (Basel). 2024 May 7;16(5):215. doi: 10.3390/toxins16050215.
5
Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against (Lepidoptera: Noctuidae).
Toxins (Basel). 2024 Apr 16;16(4):193. doi: 10.3390/toxins16040193.
7
Cross-pollination in seed-blended refuge and selection for Vip3A resistance in a lepidopteran pest as detected by genomic monitoring.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2319838121. doi: 10.1073/pnas.2319838121. Epub 2024 Mar 21.
8
Structural changes upon membrane insertion of the insecticidal pore-forming toxins produced by .
Front Insect Sci. 2023 Apr 26;3:1188891. doi: 10.3389/finsc.2023.1188891. eCollection 2023.
9
Reduced toxin binding associated with resistance to Vip3Aa in the corn earworm ().
Appl Environ Microbiol. 2023 Dec 21;89(12):e0164423. doi: 10.1128/aem.01644-23. Epub 2023 Nov 28.
10
Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2306932120. doi: 10.1073/pnas.2306932120. Epub 2023 Oct 24.

本文引用的文献

1
Role of receptors in Bacillus thuringiensis crystal toxin activity.
Microbiol Mol Biol Rev. 2007 Jun;71(2):255-81. doi: 10.1128/MMBR.00034-06.
2
Purification and characterization of aminopeptidase N from Spodoptera litura expressed in Sf21 insect cells.
Protein Expr Purif. 2007 Aug;54(2):267-74. doi: 10.1016/j.pep.2007.03.003. Epub 2007 Mar 13.
4
Glycolipids as receptors for Bacillus thuringiensis crystal toxin.
Science. 2005 Feb 11;307(5711):922-5. doi: 10.1126/science.1104444.
5
Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3).
Biochem J. 2005 Feb 15;386(Pt 1):85-91. doi: 10.1042/BJ20041466.
6
Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae.
Eur J Biochem. 2004 Aug;271(15):3127-35. doi: 10.1111/j.1432-1033.2004.04238.x.
7
Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis.
Biochem Biophys Res Commun. 2003 Oct 10;310(1):158-62. doi: 10.1016/j.bbrc.2003.08.137.
8
Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis.
Insect Biochem Mol Biol. 2003 Oct;33(10):999-1010. doi: 10.1016/s0965-1748(03)00114-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验